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A B S T R A C T

We generalize a formula for the Goldreich±Julian charge density (rGJ), originally derived

for a rotating neutron star, for arbitrary oscillations of a neutron star with an arbitrary

magnetic field configuration under the assumption of low current density in the inner parts

of the magnetosphere. As an application, we consider the toroidal oscillation of a neutron

star with a dipole magnetic field and calculate the energy losses. For some oscillation modes,

the longitudinal electric field cannot be cancelled by putting charged particles in the

magnetosphere without the presence of a strong electric current � j . rGJc � c=vr�: It is

shown that the energy losses are strongly affected by plasma in the magnetosphere, and

cannot be described by vacuum formulae.
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1 I N T R O D U C T I O N

The oscillations of neutron stars may provide an opportunity to

study their internal structure. Oscillations of neutron stars (NS)

may be observable in pulsars just after a glitch. The energy release

during the glitch is estimated as

E ,
1

2

Mcrust

MNS

IV2 DV

V
; �1�

where I is the moment of inertia of the NS, V is an angular

velocity of rotation, DV is a jump of angular velocity, MNS is the

mass of the NS and Mcrust is the mass of the crust. For the Vela

pulsar, E , 1037 erg: There are about 20 glitching pulsars, which

have suffered a total of 45 glitches (Lyne 1996). The energy

release in each of these glitches is similar to that of the Vela

pulsar. If several per cent of this energy went into the excitation of

oscillations it would be possible to observe them. Another

example of how oscillations of NS could be observed in pulsars

is by observations of microstructure in single pulses. Boriakoff

(1976) proposed that vibrations of a neutron star may cause the

periodicity of micropulses observed in some pulsars. A difficulty

in this theory is that no effective mechanism has been proposed for

the excitation of oscillations (Hankins 1996).

Oscillating neutron stars have been proposed as a source for

Galactic gamma-ray bursts (GRBs) by Pacini & Ruderman (1974)

and Tsygan (1975). This idea is further developed by Blaes et al.

(1989), Smith & Epstein (1993) and Fatuzzo & Melia (1993).

Oscillation-induced hard gamma radiation from NS was proposed

by Bisnovatyi-Kogan (1995) and Ding & Cheng (1997) as an

explanation of the hard delayed emission observed from some

GRBs (Hurley et al. 1994), even if the GRB itself is generated by a

different mechanism (Bisnovatyi-Kogan et al. 1975). Recent GRB

observations make a Galactic origin for GRBs unlikely, but a

Galactic model may not be excluded completely. At least for soft

gamma repeaters, which are believed to be neutron stars, oscil-

lations of stars can play an essential role (Duncan 1998).

Eigenfrequencies and eigenfunctions of neutron star oscillations

have been computed by many authors (McDermott, Van Horn &

Hansen 1988; Carroll et al. 1986; Strohmayer 1991). These calcu-

lations have shown that typical periods of neutron star oscillations

range from 0.1 up to several tens of ms. On the other hand,

observed pulsar radiation in different spectral regions is generated

mostly in the magnetosphere (TruÈmper & Becker 1998). If we are

looking for oscillation-induced radiation from pulsars, we should

investigate processes in the magnetosphere. A complete solution

for vacuum electromagnetic fields near an oscillating magnetized

neutron star was obtained by Muslimov & Tsygan (1986). For a

typical NS magnetic field strength (.109 G), however, the electric

field arising from the oscillation of a star will be strong enough to

pull charged particles from the surface into the magnetosphere.

Hence, any realistic model of the magnetosphere of an oscillating

NS must take into account the presence of charged particles. This

will also affect the electromagnetic energy losses of a pulsating

magnetized star. Electromagnetic energy losses of an oscillating

NS in vacuum were calculated by McDermott et al. (1984) and

Muslimov & Tsygan (1986).
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As a first step in the investigation of the magnetosphere of an

oscillating neutron star with non-zero charge density, we consider

the inner part of the magnetosphere, assuming low current density

there. We generalize a formula for the Goldreich±Julian charge

density, derived originally for a rotating NS, for a NS oscillating in

any arbitrary mode. This allows us to take into account plasma

present in the magnetosphere of the NS and calculate the energy

losses. The plan of the paper is as follows. In the first section we

introduce some definitions and give an algorithm for calculation

of the Goldreich±Julian charge density for an arbitrary oscillation

mode and magnetic field structure under the assumption of low

current density, and discuss the limitations of this assumption. In

the second section we apply this formalism to toroidal oscillations

of a NS with a dipole magnetic field. We calculate the Goldreich±

Julian charge density and energy losses for some oscillation

modes and discuss the factors affecting energy losses of an

oscillating neutron star.

2 G E N E R A L F O R M A L I S M

2.1 Basic definitions

As was first pointed out by Goldreich & Julian (1969), a rotating

NS cannot be surrounded by a vacuum. The electric field gener-

ated by the rotation of magnetized NS will pull charged particles

into the magnetosphere ± the electrostatic force near the NS

surface in a vacuum would be much stronger than the gravitational

one for both electrons and ions. According to the calculations of

Jones (1986), the binding of charged particles in the crust of a

typical pulsar is not strong enough to prevent them being pulled

into the magnetosphere by the vacuum electric field. Even if the

binding of charged particles in the cold crust of an old NS can

prevent the particles escaping, however, the magnetosphere of a

strong magnetized neutron star can be filled by charged particles

by the mechanism proposed by Ruderman & Sutherland (1975)

for pulsars.

On the NS surface, the vacuum electric field generated by

rotation or oscillation has a radial component, the value of which

is a substantial part of the full field strength (Muslimov & Tsygan

1986; Goldreich & Julian 1969). To an order of magnitude, this

field for the rotating star is

Erot .
Vrp

c
B; �2�

where V is the rotational frequency of the NS, rp is the NS radius

and B is the magnetic field strength near the star. In the case of NS

oscillations, the corresponding vacuum electric field is

Eosc .
vj

c
B; �3�

where v is the oscillation frequency and j is the displacement

amplitude. The vacuum electric field strength near the NS

oscillating with period t will be of the same order as the field

strength generated by rotation of the NS with period Teff:

Teff . t
rp

j
: �4�

For typical oscillation parameters (McDermott et al. 1988), the

strength of the vacuum electric field of the oscillating NS will be

the same as that generated by a ,1 s pulsar. Hence, the magneto-

sphere of an oscillating, even non-rotating, NS should be filled

by charged particles. In the strong magnetic field of the NS

(B . 109 G�; synchrotron energy losses of charged particles in the

magnetosphere are very high. They lose their perpendicular

momentum (if any) very rapidly and occupy the first Landau level,

i.e. they can move only along magnetic field lines.

In the presence of strong longitudinal (parallel to B) electric field

Ek, charged particles are accelerated to high energies and their

curvature radiation in a strong magnetic field produces an electron±

positron pair cascade (Sturrock 1971; Daugherty & Harding 1982).

The particles produced in the cascade cancel the accelerating

electric field. Because of this, there should be a regular force-free

�Ek ! B� configuration of the electromagnetic field, at least in the

inner parts of the magnetosphere, where the NS magnetic field is

strong enough to allow single photon pair creation:

EGJ ´ B � 0: �5�
Let us call the electric field EGJ the Goldreich±Julian (GJ) electric

field. We introduce the generalized Goldreich±Julian charge

density as the charge density in the magnetosphere corresponding

to the GJ electric field EGJ:

rGJ �
1

4p
7 ´ EGJ: �6�

It follows from the above discussion that the charge density in the

inner parts of the magnetosphere of an oscillating NS should be

approximately equal to the GJ charge density.

In the following, we are looking for the GJ electric field and the

GJ charge density, because they should adequately describe the

electric field and the charge density in the inner parts of the NS

magnetosphere. Knowledge of them will allow us to calculate

electromagnetic energy losses of an oscillating NS.

2.2 Basic equations: low current density approximation

We assume the neutron star to be a magnetized conducting sphere

of radius rp. We are interested only in the pulsation modes with

non-vanishing amplitude j on the surface. Consider a region close

to the NS (near zone), at distances from the NS surface smaller

than the wavelength l � 2pc=v; where v is the oscillation

frequency and c is the speed of light. In the near zone, r , l; one

can neglect the displacement current term. Maxwell's equations

for the electric and magnetic fields in the near zone are

7 ´ E � 4pr; �7�

7 � E � 2
1

c
tB; �8�

7 ´ B � 0; �9�

7 � B � 4p

c
j; �10�

where B and E are the magnetic and electric fields and r and j are

the charge and current density. We use the notation for partial

derivatives a ; =a: On the unperturbed surface of the NS, E
and B must satisfy the following boundary conditions:

Br�rp� � B0r; �11�

Bu;f�rp� � B0u;0f ^
4p

c
Jf;u; �12�

Eu;f�rp� � 2
1

c
�V � B0�u;f; �13�

Er�rp� � 2
1

c
�V � B0�r � 4ps; �14�
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where the subscripts r, u ,f denote vector components in a

spherical coordinate system, V is the velocity of oscillation of the

NS surface, B0 is the surface magnetic field inside the NS, and s
and J are the induced surface charge and current density. Here

equations (14) and (12) are used to determinate the surface charge

and current densities. Close to the NS, the current flows along the

magnetic field lines. Therefore for the inner parts of the

magnetosphere it can be expressed as

j � a�r; u;f�B; �15�
where a is a scalar function. This system must be completed by

equation (5), defining the GJ electric field. We failed to find an

analytical solution of the system in the general case. Under some

physical assumptions, however, it can be solved analytically for an

arbitrary oscillation mode and magnetic field configuration of the

NS.

Let us assume that the physical current density in the magneto-

sphere is low enough that the magnetic field to first order in
~j ; j=rp can be considered as generated only by volume currents

inside the NS and by surface currents on its surface, i.e.

4p

c
j ! 7 � B�1�; �16�

where B(1) is the first order in jÄ perturbation of the magnetic field.

To an order of magnitude, this means

j !
1

r
B�0�

j

rp

� �
c � B�0�vj

crp
c

c

vr

� �
; �17�

where B(0) is the unperturbed magnetic field strength. The value of

the Goldreich±Julian charge density near the surface of the NS is,

to an order of magnitude, rGJ�rp� . B�0�V=�crp�; where V is the

oscillation velocity amplitude. Thus equation (16) implies

j ! rGJ�rp�c c

vr

� �
: �18�

We call assumption (16) the low current density approximation.

For regions of complete charge separation, where there are

charged particles of only one sign, the maximum current density is

rGJc. The absolute value of the Goldreich±Julian charge density

decreases with increasing r and in the near zone r ! c=v: Conse-

quently condition (18) for a charge-separated solution is satisfied

automatically. Charged particles in the near zone move along

magnetic field lines. Therefore the current flowing through a field

line tube remains the same. Because of this, condition (18) is

automatically satisfied along field lines that have crossed a region

of charge separation. For regions in the near zone, where there are

charged particles of different sign and the magnetic field lines

have not crossed a charge-separated region, condition (18) can be

violated.

We assume that condition (18) is satisfied in the whole near

zone and find the GJ electric field and the GJ charge density. For

some oscillation modes, the rGJ obtained under this assumption

has singularities. For the reasons discussed in Section 2.2, a

regular solution of the system (5), (7)±(15) should exist for any

oscillation mode and unperturbed magnetic field configuration of

a NS. Hence, in cases where our solution has singularities, the low

current density approximation fails and the physical current

cannot be neglected in the whole near zone. In some regions the

current density will be, to an order of magnitude,

j . rGJ�rp�c c

vr

� �
: �19�

This situation will be considered in subsequent papers. As we will

show, the small current density approximation holds in regions of

open field lines. In the whole near zone it is valid for more than

50 per cent of the modes, at least for toroidal oscillations of a NS

with a dipole magnetic field.

2.3 Goldreich±Julian charge density

2.3.1 Equations for the Goldreich±Julian charge density

In the low current density approximation, one can neglect the

current term in Ampere's law (10). To the first order of the

dimensionless oscillation amplitude jÄ in the near zone, we have

7 � B � 0: �20�
Using the properties of solenoidal vector fields, we write B in the

form

B � 7 � 7 � �Per� � 7 � �Qer�; �21�
where er � r=r: Scalar functions P and Q can be expanded in

spherical harmonics Ylm as

P�r; t� �
X

lm

~Plm�r; t�; Ylm�u;f� �22�

Q�r; t� �
X

lm

~Qlm�r; t�Ylm�u;f�: �23�

Substituting B in the form (21) into equation (20) and multiplying

the result by er , we obtain

DVQ � 0; �24�
where DV is the angular part of the Laplacian,

DV ;
1

sin u
u�sin uu� � 1

sin2 u
ff: �25�

Substitution of the expansion (23) into equation (24) gives us
~Qlm ; 0 for each l,m. Hence, Q ; 0 (see Muslimov & Tsygan

1986) and the magnetic field can be expressed in terms of only

one scalar function P as

B � 7 � 7 � �Per�: �26�
Substituting for B using expression (26) in Faraday`s law (8), we

obtain

7 � E � 2
1

c
7 � 7 � �tPer�: �27�

Integrating this equation, we find

E � 2
1

c
7 � �tPer�2 7C; �28�

where C is an arbitrary scalar function.

From the theory of partial differential equations (Elsgolts 1965;

Brandt 1947) it is known that for any vector field A there exists a

vector field perpendicular to A if and only if

A ´ �7 � A� � 0: �29�
From equation (20), it follows that magnetic B satisfies equation

(29) and there always exists a vector field perpendicular to B. Let

us assume that there exists an electric field EGJ with no

component parallel to B, satisfying the boundary conditions

(13), (14). Evidently it satisfies Maxwell's equations (7)±(20), and

consequently has the form

EGJ � 2
1

c
7 � �tPer�2 7CGJ: �30�
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The electric field EGJ satisfies equation (5). Substituting for EGJ

using expression (30) in the equality (5), we have an equation for

CGJ:

1

c
7 � �tPer� ´ B� 7CGJ ´ B � 0: �31�

Substituting for EGJ from the expression (30) in equality (6), we

obtain an expression for the GJ charge density in terms of the GJ

potential CGJ:

rGJ � 2
1

4p
DCGJ: �32�

In other words, if one uses representation (26) for a magnetic field

in the near zone, then the Goldreich±Julian electric field is written

as a sum of two terms (30). The first one is the vacuum term, and

the second one (27CGJ) represents the contribution of the

charged particles in the magnetosphere of the NS. The potential

CGJ is a solution of equation (31). In spherical coordinates,

equation (31) becomes (using expression 26)

DVPrCGJ 2 ruPuCGJ 2
1

sin2 u
rfPfCGJ

� 1

c sin u
�rfPutP 2 ruPftP� � 0: �33�

Let us consider small oscillations of a NS, ~j ! 1: We expand

the function P in a series in jÄ and approximate it by the sum of the

first two terms:

P�t; r; u;f� < P0�r; u;f� � dP�t; r; u;f�; �34�
where the function P0(r, u ,f) is responsible for the unperturbed

magnetic field and dP(t, r, u ,f) is the first-order term in an

expansion of P(t, r, u ,f) in jÄ. We expand dP in series of spherical

harmonics

dP �
X
l;m

d ~plm�t; r�Ylm�u;f�: �35�

Subsequently we will need only the time derivative of dP. After

substitution of the expansion (35) in equation (20) we find (see

Appendix A)

tdP �
X
l;m

rp

r

� �l

tdplm�t�Ylm�u;f�: �36�

The coefficients tdplm(t) are fixed by the boundary conditions.

2.3.2 Boundary conditions

The boundary conditions for the potential CGJ are obtained from

the boundary conditions for electric field (13). The tangential

components of the GJ electric field on the surface of the NS are

EGJ
u jr�rp �

1

c

1

r

1

r
DVPvf � 1

sin u
rfPvr

� �����
r�rp

; �37�

EGJ
f jr�rp � 2

1

c

1

r

1

r
DVPvu � ruPvr

� �����
r�rp

: �38�

From expression (30), the tangential components of the GJ electric

field outside the NS are

EGJ
u � 2

1

r

1

c

1

sin u
ftP� uCGJ

� �
; �39�

EGJ
f �

1

r

1

c
utP 2

1

sin u
fCGJ

� �
: �40�

Equating these expressions on the surface of the NS and

expressing CGJ, one obtains boundary conditions for the u and

f derivatives of CGJ:

uCGJjr�rp � 2
1

c

� 1

r
DVPvf � 1

sin u
rfPvr � 1

sin u
ftP

� �����
r�rp

; �41�

fCGJjr�rp �
1

c
sin u

� 1

r
DVPvu � ruPvr � utP

� �����
r�rp

: �42�

From these boundary conditions we obtain the boundary condition

to be applied to dplm(t). Differentiating equation (41) with

respect to f and equation (42) with respect to u and equating

results, we obtain an expression for dplm(t) to first order in jÄ (see

Appendix B),

tdplm�t� �
1

l�l� 1�
�
4p

dVY*
lm�V ´ 7�DVP0� � DVP0�7 ´ V'�

� r2�7'�rP0� ´ 7'�vr�jr�rp : �43�
The boundary condition for CGJ can be obtained by integrating

equation (41) or equation (42). For convenience we will use as

boundary condition the result of integrating equation (41) over u.

For a perturbation depending on time t as e2iv t we obtain, to first

order in jÄ,

CGJjr�rp � 2
1

c

�
du

� 1

r
DVP0vf � 1

sin u
rfP0vr � 1

sin u
ftdP

� �����
r�rp

� e2ivtF�f�; �44�
where F is a function of f .

For each oscillation mode, the corresponding velocity field is

continuously differentiable. From the boundary condition for the

electric field (13), it follows that the tangential components of EGJ

are finite. The vacuum term on the right-hand side in expression

(30) for the electric field EGJ is also finite [with the natural

assumption that P is continuously differentiable with respect to u
and f expressions (43) and (36) are finite for r � rp�: Let us

consider the azimuthal component of GJ electric field EGJ
f near the

poles.1 In expression (40) for EGJ
f outside the NS, both EGJ

f and the

first (vacuum) term on the right-hand side of expression (40) are

finite. Consequently the second term

2
fCGJ

sin u

����
r�rp

is also finite, hence fCGJj{u�0;p;r�rp} � 0: Thus in the boundary

condition (44) one must choose F such that CGJju�0;p;r�rp �
C1;2e2ivt; where C1,2 are some constants. Using the gauge

freedom, we choose

CGJju�0;r�rp � 0: �45�
1 Points with u � 0�p�; r � rp:
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Using approximation (34) for P, we write an equation for CGJ in

the case of small oscillations:

DVP0rCGJ 2 ruP0uCGJ 2
1

sin2 u
rfP0fCGJ

� 1

c sin u
�rfP0utdP 2 ruP0ftdP�

� 0: �46�
The first-order partial differential equation (46), together with the

boundary conditions (44), (45) and tdP described by formulae

(36) and (43), determines CGJ. The solution of this problem

provides CGJ to first order in jÄ. The Goldreich±Julian charge

density rGJ can then be obtained from the formula (32).

2.4 Rotating NS ± pulsar

Finally, in this section we consider an important particular case ±

a rotating neutron star. We choose the z axis to be parallel to the

rotation axis. In this case the partial derivative t can be replaced

by 2Vf, where V is the angular velocity. Thus

tP � 2VfP: �47�
Equation (33) for CGJ takes the form

DVPrCGJ 2 ruPuCGJ 2
1

sin2 u
rfPfCGJ

2
V

c

1

sin u
�rfPufP 2 ruPffP� � 0: �48�

By direct substitution of

Crot
GJ � 2

V

c
sin uuP; �49�

it can be shown that the potential (49) is a solution of equation

(48), and satisfies the boundary conditions (41, 42). We note that

equation (33) and its particular form (48), and boundary con-

ditions (41, 42), are valid for an arbitrary oscillation amplitude,

i.e. also for rotation of the NS. Substituting potential Crot
GJ into the

expression for the GJ electric field (30), one obtains

Erot
GJ � 2

1

c
�V � r� � B: �50�

This result was obtained by Goldreich & Julian (1969) and Mestel

(1971).

3 D I P O L E M AG N E T I C F I E L D ± T O R O I DA L

O S C I L L AT I O N S

3.1 General formulae

As an application of the developed formalism, we consider the

case of small-amplitude toroidal oscillations of a NS with dipole

magnetic field. The velocity field on the NS surface for a toroidal

oscillation mode (l, m) is described by (Unno et al. 1979)

vr � 0;

vu � e2ivtW�r� 1

sin u
fYlm�u;f�;

vf � 2e2ivtW�r�uYlm�u;f�; �51�
where W is the transverse velocity amplitude. For simplicity we

assume that the mode axis is aligned with the dipole moment m .

We can do this without loss of generality, because any oscillation

mode with the mode axis not aligned with the dipole moment can

be represented by a series of oscillation modes with the mode axis

parallel to m . In this case the unperturbed magnetic field is

B � B0
rp

r

� �3

cos u er � 1

2
B0

rp

r

� �3

sin u eu; �52�

where er and eu are unit coordinate vectors. This field is described

by the scalar function P
dip
0 (see equations 26 and 34) according to

the formulae (A7) and (A8):

P
dip
0 � B0r3

*

2r
cos u: �53�

The scalar function dPdip (see equation 34) describes the first

order in jÄ magnetic field perturbation. The time derivative of this

function for an oscillation mode (l, m), according to formulae (36),

(B7), is

tdP
dip
lm � B0wrp

1

l�l� 1�
rp

r

� �l

fYlm; �54�

where w ; e2ivtW : Substituting P
dip
0 and tdP

dip
lm into the general

equation (46), we obtain a partial differential equation for the GJ

potential Clm
GJ for a NS with a dipole magnetic field oscillating

with a small amplitude in a toroidal mode (l, m):

2 cos u rC
lm
GJ �

1

r
sin u uC

lm
GJ 2

m2

l�l� 1�
B0w

c

rp

r

� �l�1

Ylm � 0;

�55�
where Clm

GJ corresponds to one excited oscillation mode (l, m), and

for the general mode CGJ �
P

lmC
lm
GJ: The characteristics of the

equation (55) are

t � C0;

f � C1;

sin u
rp

r

� �1=2� C2;

Clm
GJ 2

m2

l�l� 1�
B0wrp

c

rp

r

� �l

sin2l u

�
Ylm

�sin u�2l�1
du � C3: �56�

The integral of equation (55) is an arbitrary function of constants

C0, C1, C2, C3,

w�C0;C1;C2;C3� � 0: �57�
Expressing Clm

GJ; we have for the general solution of equation (55)

Clm
GJ �

m2

l�l� 1�
B0wrp

c

rp

r

� �l

sin2l u �
�

Ylm

�sin u�2l�1
du

�Flm sin u
rp

r

� �1=2

;f; t

� �
; �58�

where F is an arbitrary function. In order for Clm
GJ represented by

the expression (58) to be a GJ potential, it must satisfy the

boundary conditions on the surface of the NS (44) and (45), which

in the case of toroidal oscillations of a NS with dipole magnetic

field take the form

Clm
GJjr�rp � 2

B0wrp

c

�
cos u uYlm 2

m2

l�l� 1�
Ylm

sin u

� �
du

� e2ivtF�f�; �59�
Clm

GJju�0;r�rp � 0: �60�
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Substituting the Clm
GJ given by expression (58) into the boundary

conditions (59), (60), we obtain the boundary condition for the

function Flm:

Flm sin u
rp

r

� �1=2

;f; t

� �����
r�rp

�

2
B0wrp

c

�
cos u uYlm 2

m2

l�l� 1�
Ylm

sin u

� �
du

2
B0wrp

c

m2

l�l� 1� sin2l u

�
Ylm

�sin u�2l�1
du

� B0wrp

c

�
cos u uYlm 2

m2

l�l� 1�
Ylm

sin u

� �
du

� �����
u�0

; �61�

where the last term is added in order to satisfy the second

boundary condition (60). The function Flm depends on u in the

combination (rp/r)1/2 sin u . To obtain Flm, one has to express the

right-hand side of equation (61) in terms of sin u , and to replace

sin u by (rp/r)1/2 sin u . Substituting the function Flm into the

expression (58), we obtain the potential Clm
GJ for small toroidal

oscillations of a NS with a dipole magnetic field for the mode

(l, m). Using the formula (32), we obtain the Goldreich±Julian

charge density for that mode. We have developed a set of

programs using the computer algebra language mathematica 3.0

(Wolfram 1996) for calculating the analytical expressions of rlm
GJ

according to the algorithm described in this section. These

programs were tested for some (l,m) by comparing results

obtained by hand and by computer, and also by checking the

condition EGJ ´ B � 0:

3.2 Main results

3.2.1 Goldreich±Julian charge density

In the solution for the whole region, the expression (61) is used,

where on the right-hand side cos u should be replaced by �1 2
�rp

r
� sin2 u�1=2 for 0 < u , p=2 (first hemisphere) and by 2�1 2

�rp
r
� sin2 u�1=2 for p=2 < u < p (second hemisphere). Because of

this, there are two different expressions for CGJ for both

hemispheres. If these expressions give different results for u �
p=2 for r . rp; there is a discontinuity in the function CGJ at the

equatorial plane, and consequently rGJ(r,p/2,f) becomes infin-

ite. As we discussed in Section 2.2, this unphysical result indicates

that the low current density approximation for such oscillation

modes cannot be applied in the whole near zone. In this situation it

is impossible to cancel the accelerating electric field in the whole

near zone without the presence of a strong electric current (19) in

l =2,m=1 l =3,m=3

l =1,m=1 l =2,m=0

Figure 1. Velocity field on a sphere for toroidal modes (1, 1), (2, 0), (2, 1) and (3, 3), shown at time t � 2pn=v; where n is an integer, as a projection on the

meridional plane f � 21158: Circles corresponding to the longitudes 08 (right), 2908 (left) and latitude 08 are shown by dashed lines.
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some magnetospheric regions. Examples of such oscillation

modes are modes �l;m� � �2; 0�; (3, 3). The corresponding

velocity fields are given in Fig. 1. The dependence of the

potential Clm
GJ for these modes along dipole magnetic field lines is

shown in Figs 2 and 3. In the following we normalize the GJ

potential CGJ and charge density rGJ by B0Wrp/c and B0W/rpc,

respectively. The size of the discontinuity in CGJ(r,p/2,f)

decreases as the angle at which the corresponding magnetic

field line intersect the surface of the NS increases. CGJ is a

continuous function of u on the surface of the NS; nevertheless,

the GJ charge density diverges on the equator even on the surface

of NS (see Figs 4 and 5). In these figures, the charge density

rlm
GJjr�rp is shown in spherical coordinates �jrlm

GJjr�rp j; u;f�: Here

the radial coordinate represents the absolute value of the GJ

charge density as a function of the polar angle u and the azimuthal

angle f . Analytical expressions for the GJ charge density for the

discussed modes are given in Appendix C. At the equatorial plane

rlm
GJ is infinite. The mode (2, 1) is a representative of another class

of oscillation modes, in which Clm
GJ is a continuous function of u

(see Fig. 6) and rlm
GJ is finite everywhere. The velocity field and r21

GJ

are shown in Figs 1 and 7. For such modes, it is possible to cancel

the longitudinal electric field without generating a strong current

along the magnetic field lines.

Consider now the difference between two classes of toroidal

oscillation modes for a NS with a dipole magnetic field. The

boundary condition for Clm
GJ is proportional to the vector product

of V and B. The axis z is directed along the dipole magnetic

momentum. If the velocity field is symmetric relative to the

equatorial plane �l 2 m is an odd number), then the boundary

condition for Clm
GJ is also symmetric relative to the equatorial

plane. Hence, after expression of all trigonometric functions in

equation (61) in terms of cos u and sin u , cos u appears on the

right-hand side of equation (61) only in even powers. Conse-

quently, the function Flm will be the same in both hemispheres

and rlm
GJ will be finite. If velocity field is antisymmetric relative to

the equatorial plane �l 2 m is an even number or zero), then cos u
is contained in the right-hand side of equation (61) in odd powers,

the function Flm may have a discontinuity in the plane u � p=2;
and rlm

GJ for such modes becomes infinite at the equatorial plane.

An example of an oscillation mode with a velocity field that is

antisymmetric relative to the equatorial plane and for which Clm
GJ

is a continuous function of u is the mode (1, 1). Diagrams for the

potential C11
GJ and Goldreich±Julian charge density r11

GJ are shown

in Figs 8 and 9. Therefore for a dipole magnetic field the

longitudinal electric field generated by the oscillation modes with

odd �l 2 m� can be cancelled by placing charged particles in the

magnetosphere. Among the modes with even or zero �l 2 m�;
there are modes for which the longitudinal electric field cannot be

cancelled by the placement of charged particles without the

presence of a strong electric current along some magnetic field

lines.

For an oscillation mode with odd �l 2 m� there is a regular

solution for rGJ and EGJ in the low current density approximation.

This solution will be stable because of Lenz's law: increasing the

current will lead to generation of a magnetic field, inducing an

electric field, which will prevent the current from growing. In

other words, the configuration with the smallest possible current

will exist. For oscillation modes with even or zero �l 2 m�; where

no regular solution for the GJ charge density and electric field

exists, the low current density approximation cannot be used in the

whole near zone. Because some of the oscillation modes in this

class (at least one) possess a regular solution in the low current

density approximation, the total percentage of modes for which

this approximation may be used in the whole near zone exceeds

50 per cent.

The Goldreich±Julian charge density gives only a characteristic

charge density in the magnetosphere. The particle density can be

obtained by solving the full system of MHD equations, but this

has not been done even for an aligned rotator with a dipole

magnetic field (Michel 1991). The case of non-radial oscillation is

much more complicated, because of the absence of stationarity

and axial symmetry. Regarding the particle number density in the

region of closed magnetic field lines, we can say that for

oscillation modes with odd �l 2 m� there can be charge-separated

regions in the near zone. For such modes, the potential on the foot

points of magnetic field lines has the same sign and there are

regions where GJ charge density does not change the sign along

the whole magnetic field line. Hence, charged particles of

only one sign can be pulled from the NS surface into these

Figure 2. The potential C20
GJ along a dipolar magnetic field line as a

function of the polar angle u is shown for 5 field lines for t � 2pn=v; at

which the maximal absolute values of the potential are reached. The values

of u for the left and right ends of the lines 1±5 determine the polar angle at

which the corresponding magnetic field line crosses the surface of the

neutron star. The discontinuity is shown by the jump of c corresponding to

the same field line in the opposite hemisphere.

Figure 3. The potential C33
GJ along a dipolar magnetic field line as a

function of the polar angle u is shown for 5 field lines with azimuthal

angle f � p=6; for t � 2pn=v; at which the maximal absolute values of

the potential are reached. The values of u for the left and right ends of the

lines 1±5 determine the polar angle at which the corresponding magnetic

field line crosses the surface of the neutron star. The discontinuity is shown

by the jump of c corresponding to the same field line in the opposite

hemisphere.
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regions. Evidently for modes with even or zero �l 2 m� there

cannot be charge-separated regions in the near zone, because the

GJ charge density changes the sign along any magnetic field line.

3.2.2 Energy losses

In previous works, the calculation of electromagnetic energy

losses of an oscillating neutron star includes only radiation of

electromagnetic waves in the vacuum. If there is plasma in the

magnetosphere, then the energy will be lost by transformation of

the oscillation energy into kinetic energy of an outflowing plasma,

as was proposed for pulsar energy losses by Goldreich & Julian

(1969). They obtained the energy losses of a rotating aligned NS

through outflow of the charged particles from a region of open

field lines, and found it to be equal to the loss in vacuum through

radiation of electromagnetic waves by a perpendicular rotator. In

this paper we consider electric and magnetic fields in the near

zone; hence we cannot explicitly show the existence of a plasma

outflow as in the aligned rotator of Goldreich & Julian, but
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Figure 4. Left: the charge density r20
GJjr�r*

is shown in a spherical coordinate system �jrlm
GJjr�r*

j; u;f� for t � 2pn=v: The radial coordinate represents the

absolute value of the GJ charge density as a function of the polar angle u and the azimuthal angle f . Positive values of the charge density are shown by a grey

surface and negative ones by white. The dipole magnetic moment m is directed upwards along the z axis. The azimuthal angle is counted from the x axis, as in

Fig. 1. Note that for u � p=2; r20
GJ is infinite. Right: the section of surfaces from the left figure by a meridional plane. Circles correspond to the values 0.1, 0.2

and 0.3. Positive values are shown as solid lines, negative ones as dashed. Note that for u � p=2; r20
GJ is infinite.
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Figure 5. Left: the charge density r33
GJjr�r*

is shown in a spherical coordinate system �jrlm
GJjr�r*

j; u;f� for t � 2p n=v: The radial coordinate represents the

absolute value of the GJ charge density as a function of the polar angle u and the azimuthal angle f . Positive values of charge density are shown by a grey

surface and negative ones by a white one. The dipole magnetic moment m is directed upwards along the z axis. The azimuthal angle is measured from the x

axis, as in Fig. 1. Note that for u � p=2; r33
GJ is infinite. Right: the section of surfaces from the left figure by the plane f � p=6; where the maximal absolute

values of the charge density r33
GJjr�r*

are reached. Circles correspond to the values 0.04, 0.08 and 0.12. Positive values are shown solid, negative ones dashed.

Note that for u � p=2; r33
GJ is infinite.

Figure 6. The potential C21
GJ along a dipolar magnetic field line as a

function of the polar angle u is shown for 5 field lines with azimuthal

angle f � p=2; for t � 2pn=v; at which the maximal absolute values of

the potential are reached. The values of u for the left and right ends of the

lines 1±5 determine the polar angle at which the corresponding magnetic

field line crosses the surface of the neutron star.
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qualitatively the picture is as follows. The electric current arising

from the motion of the charged particles in the magnetosphere

generates a magnetic field. On the Alfvenic surface, in the region

where the value of this field becomes larger than the unperturbed

NS magnetic field, the field lines become open. Plasma escaping

from the region of open field lines produces an electromagneti-

cally driven stellar wind. The wind causes a net electric current,

which closes at infinity. This current flows beneath the stellar

surface between positive and negative emission regions. Because

it must cross magnetic field lines there, it exerts a braking torque

on the oscillating NS and reduces the oscillational energy. This

picture is similar to the one proposed by Ruderman & Sutherland

(1975) for pulsars, but now we must obtain the boundary of the

open field line region self-consistently. In our case we cannot

approximate the closed field line region by a `zone of corotation';

rather we should self-consistently determine the last closed field

line as the last field line lying inside the Alfven surface.

Consider the region near the pole. Let us use u0 to denote the

polar angle by which the last closed field line intersects the

surface of the NS. Similarly to the case of pulsars above a polar

cap, an acceleration zone and a zone of e+±e2 pair generation

above it will be built. Electron±positron pairs cancel the acceler-

ating electric field, i.e. the motion of a charged particle above the

accelerating zone will be not influenced by the electric field

generated by stellar oscillations. In the region of open field lines,

where particles escape from the neutron star and form a relativistic

wind, the average time of crossing of the acceleration zone by a

particle is much less then the oscillation period (see Discussion),

so particles in practice do not return to the star. Hence, averaged

over the oscillation period, the energy loss through the outflow of

plasma from the open field line region is

elm
pl .

1

t

�t
0

dt

�2p

0

�u0

0

j jlm�rp; u;f�Alm�u;f�jr2
* sin u du df; �62�

where A(u ,f) is the work done by the electric field to move a unit

charge to the point with coordinate (rp, u ,f):

A�u;f� .
�u

0

EGJ
u �rp; u

0;f�rp du 0: �63�

For reasons discussed at the end of Section 2.2, the charge density

in the inner parts of the magnetosphere must be approximately

equal to the Goldreich±Julian charge density rGJ. In the region of

plasma outflow, charged particles are streaming along magnetic

field lines in the same direction with ultrarelativistic velocities.

The charge density of the outflowing plasma is equal to the

Goldreich±Julian charge density. Hence, an outflowing ultra-

relativistic electron±positron plasma builds a net current density

j . rGJc: �64�
The current density can differ from the values given by expression

(64), because of differences in the averaged velocities of electron

and positron components of the plasma (for discussion on this

topic see Lyubarskii 1992), but the order-of-magnitude expression

(64) gives a good estimate for the current density (Ruderman &

Sutherland 1975). Hence, for the open field line region condition

(18) is satisfied and in expression (64) we can use the rGJ obtained

by solving equation (46) for any oscillation mode.

The last closed field line is the line for which the kinetic

energy density of the outflowing plasma at the equator [at the

point (Ra, p/2, f )] becomes equal to the corresponding energy

density of the NS magnetic field:

elm
pl �u0�

4pR2
ac

.
B2

8p

����
u� p

2
; r � Ra

: �65�

Expressing the right-hand side of this equation in terms of angle

u0, we obtain two equations (62), (65) for a self-consistent deter-

mination of u0 and elm
pl :

We have solved these equations for oscillation modes (1,1),

(2, 0) and (3, 0). Oscillation periods2 were taken from McDermott

et al. (1988). The ratio of energy losses to the vacuum ones as a

function of the amplitude of the dimensionless transverse dis-

placement jÄ for modes (1,1), (2,0) and (3,0) is given in Table 1.

One can see that energy losses through an outflowing plasma are
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Figure 7. Left: the charge density r21
GJjr�r*

is shown in a spherical coordinate system �jrlm
GJjr�r*

j; u;f� for t � 2pn=v: The radial coordinate represents the

absolute value of the GJ charge density as a function of the polar angle u and the azimuthal angle f . Positive values of charge density are shown by a grey

surface and negative ones by a white one. The dipole magnetic moment m is directed upwards along the z axis. The azimuthal angle is measured from the x

axis, as in Fig. 1. Right: the section of surfaces from the left figure by the plane f � p=2; where the maximal absolute values of the charge density r21
GJjr�r*

are reached. Circles correspond to the values 0.05, 0.1 and 0.15. Positive values are shown as solid lines, negative ones as dashed lines.

2 According to McDermott et al. (1988), the dependence of the eigen-

frequency on l is very weak, at least for small l, so we assumed the same

oscillation periods for modes (2, 0) and (3, 0).
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much less than those in a vacuum for small values of jÄ. On the

other hand, for oscillation modes l > 2; for displacement

amplitudes jÄ larger than a value jÄcr, energy losses exceed the

vacuum losses (see Fig. 10). For some oscillation modes for which

u0 ! 1; we can linearize equations (62) and (65) in u0 and obtain

an analytical estimation of u0. For toroidal oscillation mode (l, m),

the velocity amplitude V near the pole is of the order

V , W
um21; m ± 0;

u; m � 0:

(
�66�

The electric field is of the order EGJ , BV=c: From formula (63)

we have

A ,
BWrp

c

um; m ± 0;

u2; m � 0:

(
�67�

The Goldreich±Julian charge density is

rGJ ,
BW

rpc
´ um �68�

Substituting expressions (67) and (68) into equations (64), (63)

and (62), we obtain the energy loss through the plasma outflow

along open field lines:

epl , B2
0r2

*c
W

c

� �2 u2m�2
0 ; m ± 0;

u4
0; m � 0:

(
�69�

The angle u0 is determined from equation (65). After substitution

of epl into equation (65), we obtain

u0 ,

W

c

� � 1
32m

; m ± 0;

W

c

� �1
2
; m � 0:

8>>>>><>>>>>:
�70�

We see that the angle u0 is small only for modes with m , 3: This

is because of the small value of V in the polar region for modes

with m > 3: For such modes a linear analysis is not possible and

the case of large u0 needs additional investigation, which will be

given elsewhere. The energy loss resulting from plasma outflow is

epl , B2
0r2

*c

~j
8

32m
rpv

c

� � 8
32m

; m � 1; 2;

~j 4 rpv

c

� �4

; m � 0:

8>><>>: �71�

- 0.01
0

0.01
x

- 0.02

0

0.02

z

- 0.01
0

0.01
x

Figure 9. Left: the charge density r11
GJjr�r*

is shown in a spherical coordinate system �jrlm
GJjr�r*

j; u;f� for t � 2pn=v: The radial coordinate represents the

absolute value of the GJ charge density as a function of the polar angle u and the azimuthal angle f . Positive values of charge density are shown by a grey

surface and negative ones by a white one. The dipole magnetic moment m is directed upwards along the z axis. The azimuthal angle is measured from the x

axis, as in Fig. 1. Right: the section of surfaces from the left figure by the plane f � p=2; where the maximal absolute values of the charge density r11
GJjr�r*

are reached. Circles correspond to the values 0.01, 0.02 and 0.03. Positive values are shown as solid lines, negative ones as dashed lines.

Figure 8. The potential C11
GJ along a dipolar magnetic field line as a

function of the polar angle u is shown for 5 field lines with azimuthal

angle f � p=2; for t � 2pn=v; at which the maximal absolute values of

the potential are reached. The values of u for the left and right ends of the

lines 1±5 determine the polar angle at which the corresponding magnetic

field line crosses the surface of the neutron star.

Table 1. Leading terms in the
expansion over jÄ of the ratio of
electromagnetic energy loss
through plasma outflow to that
in a vacuum epl/evac, and the
distance in the equatorial plane
of the last closed field line to
the wavelength Rlm

a =l for tor-
oidal oscillation modes (1, 1),
(2, 0) and (3, 0). t is the period
of oscillations in ms.

Mode epl/evac Rlm
a =l

(1, 1) 0.02jÄ2 0.9/jÄ

(2, 0) 77jÄ2t2 0.2/jÄ

(3, 0) 9 � 105 ~j 2t4 0.09/jÄ
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The vacuum energy loss for the oscillation mode (l, m), according

to McDermott et al. (1984), is

evac , B2
0r2

*c ~j 2

rpv

c

� �8

; l � 1;m � 0;

rpv

c

� �2l�2

; l � 1;m � 1; l > 2;m � 0¼l:

8>><>>:
�72�

From these formulae we obtain the oscillation amplitude jÄ for

which the plasma energy loss is larger than the vacuum loss:

~j . ~j cr ,

rpv

c

� �2

; l � 1;m � 0;

rpv

c

� �l21

; l > 2;m � 0; l > 1;m � 1;

rpv

c

� �l=321

; l > 2;m � 2:

8>>>>>>><>>>>>>>:
�73�

From formula (73) it follows that for modes �l � 1;m � 0�;
�l > 2; m � 0; 1� and �l > 4;m � 2�; non-vacuum energy loss

exceeds the vacuum loss even for small displacement amplitudes

jÄ, because for these modes ~j cr ! 1:
Electromagnetic waves radiated by the oscillating NS are

screened by the plasma. For small jÄ the non-vacuum energy loss

according to equation (73) is smaller than the vacuum loss,

because at the GJ density of particles the accelerated plasma

cannot escape from the magnetosphere. The ratio of the equatorial

radius for the last closed field line to the wavelength l is given in

Table 1. For mode (3,0), this dependence is shown in Fig. 11. We

see that the last closed field line for small values of the

displacement amplitude lies deep inside the wave zone. In the

region limited by the last closed field lines and a sphere of radius

l (formal boundary of the wave zone) in this situation, confined

plasma waves such as Alfven or magnetosonic waves are excited

by the oscillation of the NS; see Fig. 12. This will lead to

accumulation of energy in this region in the form of plasma wave

energy. When the density of this energy becomes larger than that

of the magnetic energy, the field lines become open. These

Figure 10. The ratio of the energy loss through outflow of plasma from the

region of open field lines to the loss in vacuum is shown as a function of

the dimensionless displacement amplitude jÄ for the mode (3,0). The solid

line corresponds to the oscillation period T � 19 ms (mode 3t0 in the

notation of McDermott et al. 1988), the dashed line to T � 1:7 ms (mode

3t1) and the dotted line to T � 1:08 ms (mode 3t2); see note in Section

3.2.2.

plasma outflow

plasma outflow

plasma waves plasma waves

last closed field line

boundary of the wave zone

Figure 12. Structure of the magnetosphere of an oscillating neutron star (arbitrary scale). See explanations in the text.

Figure 11. The ratio of the equatorial radius of the last closed field line to

the wavelength l is shown as a function of the dimensionless displacement

amplitude jÄ for the mode (3, 0). This ratio does not depend on the

oscillation frequency v.
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processes will lead to a decrease of the equatorial radius of the last

closed field lines, and hence an increase in the energy loss.

A second process that could lead to larger energy losses than

obtained by the solution of equation (65) is rotation of the neutron

star. In this case the equatorial radius of the last closed field line is

the radius of the light cylinder RL � V=c; and the surface area for

plasma outflow may be considerably increased. It is not clear,

however, how the interaction between rotation and oscillation will

influence the total energy losses.

4 D I S C U S S I O N

Under the assumption of low current density, we have developed a

formalism describing the inner parts of the magnetosphere of an

oscillating neutron star in the same way as in the case of rotation.

This assumption is valid in the region of open field lines for any

oscillation mode. For some oscillation modes the assumption

about low current density everywhere in the inner magnetosphere

leads to unphysical results ± the Goldreich±Julian charge density

becomes infinite at some points. For such oscillation modes, the

low current density approximation cannot be used in the whole

region of closed magnetic field lines near the NS. The current

density for these modes along some closed magnetic field lines

will be of the order of magnitude j . rGJc � c=�vr�. For a rotating

neutron star, our formalism yields the same values for the

Goldreich±Julian charge density and electric field as obtained in

the works of Goldreich & Julian (1969) and Mestel (1971).

We applied the general formalism to the case of toroidal

oscillations of a neutron star with a dipole magnetic field. We

calculated the GJ charge density and showed that for the case

considered, the assumption about low current density in the whole

inner magnetosphere is valid for more than half of all modes. We

calculated the electromagnetic energy losses of a NS with a dipole

magnetic field for some toroidal oscillation modes and showed

that the energy losses of an oscillating neutron star are strongly

affected by the plasma present in its magnetosphere. The electro-

magnetic energy losses of an oscillating NS resulting from plasma

outflow from the magnetosphere have in general a different

dependence on the oscillation frequency v and the dimensionless

displacement amplitude jÄ from the energy losses resulting from

radiation of electromagnetic waves in a vacuum. This affects all

previous calculations of the electromagnetic damping rate of NS

oscillations. Our calculations give a lower limit on the electro-

magnetic energy losses of an oscillating NS, for the reasons

discussed at the end of Section 3.2.2. The energy of oscillation of

a star depends on the dimensionless displacement amplitude as jÄ2.

Energy losses through plasma outflow, in contrast to energy losses

through the radiation of electromagnetic waves in a vacuum, have

a different dependence on the displacement amplitude. Conse-

quently the electromagnetic energy losses of an oscillating NS in

general depend on the oscillation amplitude jÄ. To estimate the

oscillation damping time for the considered oscillation modes, one

can use the values given in table 6 of McDermott et al. (1988),

multiplying by functions from Table 1 of this paper for a given

displacement amplitude. Here we have restricted ourselves to the

simple case of toroidal oscillations. Starquakes should excite a

whole spectrum of oscillations, including p and g modes. The

magnetosphere structure produced by these modes will be con-

sidered in a future paper.

With the proposed formalism, it is possible to apply theoretical

models developed for pulsars to oscillating neutron stars. For

example, one can investigate the acceleration mechanism

proposed by Scharlemann, Arons & Fawley (1978) or Ruderman

& Sutherland (1975) for oscillating neutron star. The inertial

frame dragging mechanism proposed by Muslimov & Tsygan

(1992) does not work here, because we consider a non-rotating

star. The characteristic time of pair cascade formation is estimated

as hPPF/c, where hPPF is the height of the pair formation front

above the surface. In the `Ruderman±Sutherland' model, the

minimum value of hPPF is the same as for a NS rotating with the

angular frequency Veff � vj~; and for the usual assumed

parameters of a NS, the oscillation is of the order of 104±

105 cm. In an `Arons±Scharlemann' like model, the height of the

pair formation front can be smaller than in a pulsar rotating with

the angular frequency Veff (several km), because in general for

non-radial oscillations, ratio rGJ/B along magnetic field lines

increases faster than in the magnetosphere of a rotating NS, which

leads to larger accelerating electric fields. Because the character-

istic time of pair cascade formation is much shorter than the

period of oscillation, one can consider the polar cap acceleration

zone at any given moment of time as stationary. The problem of

the return current region for the case of an oscillating NS, as in the

case of a pulsar, remains open. Similarly to the case of pulsars, the

return current can flow along the last closed magnetic field line.
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A P P E N D I X A : C A L C U L AT I O N O F P A N D d P

Substituting B from formula (26) using expansion (34) into equation (20), we have

7 � 7 � 7 � �P0 � dP�er � 0: �A1�
Because P does not depend on t, equation (A1) is equivalent to the following two equations:

7 � 7 � 7 � �P0er� � 0; �A2�

7 � 7 � 7 � �dPer� � 0: �A3�
In spherical coordinates, equation (A3) is

7 � 7 � 7 � �dPer� � 2eu
1

r sin u

1

r2
fDVdP� rrfdP

� �
� ef

1

r

1

r2
uDVdP� rrudP

� �
� 0: �A4�

Substituting the expansion of dP (35), we obtain

2
1

r2
l�l� 1�d ~plm�r; t� � rrd ~plm�r; t� � 0: �A5�

The solution of equation (A5) that vanishes at infinity is

d ~plm�r; t� � rp

r

� �l

dplm�t�: �A6�

The time-dependent coefficients plm(t) have to be determined from the boundary conditions. Substituting expression (A6) into expansion

(35) and taking the derivative with respect to t, we obtain expression (36).

Similarly, for the coefficients P0 lm in the expansion of the function P0 we have

P0 lm�r� � plm

rp

r

� �l

: �A7�

Substituting the expansion of the function P0 in spherical harmonics into the boundary condition (11), multiplying this expression by Y*
lm

and integrating it over solid angle 4p, we have [compare this with formula (16) in Muslimov & Tsygan (1986)]

plm �
r2

*

l�l� 1�
�

4p

B0rY
*
lm dV; �A8�

where Y*
lm is the inverse spherical harmonic,

�
YlmY*

l 0m 0 dV � dll 0dmm 0 and dV � sin u du df is the solid angle.

A P P E N D I X B : C A L C U L AT I O N O F df l m�t�
Differentiating equation (41) with respect to f and equation (42) with respect to u , equating the results and multiplying by 1/sin u we

have

1

sin u
u�sin u u�tP�� � 1

sin2 u
ff�tP�

� �����
r�rp

� 2
1

r
DVP

1

sin u
u�sin uvu� � 1

sin u
f vf

� ��

� 1

sin u
u�sin u ruP� � 1

sin2 u
rffP

� �
vr � 1

r
uDVPvu � 1

r sin u
fDVPvf

� �
� ruPuvr � 1

sin2 u
rfPfvr

� ������
r�rp

: �B1�

Simplifying equation (B1) by writing P as a sum of the two terms (34), we obtain an expression for the time-dependent part dP to first

order in jÄ:

tDVdPjr�rp � 2 vrrDVP0 � vu
1

r
uDVP0 � vf

1

r sin u
fDVP0

� �
� DVP0

1

r sin u
u�sin uvu� � 1

r sin u
fvf

� ��

� ruP0uvr � 1

sin2 u
rfP0fvr

� ������
r�rp

: �B2�
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or in vector notation

tDVdPjr�rp � 2{V ´ 7�DVP0� � DVP0�7 ´ V'� � r2�7'�rP0� ´ 7'�vr}jr�rp ; �B3�

where V' is the tangential part of the velocity, V' � euvu � efvf; and 7' is the angular part of the gradient: 7' � eu1=r u �
ef1=�r sin u�f: Substituting the expansion of dP in spherical harmonics (36), multiplying the result by Y*

lm and integrating it over the

solid angle 4p, we obtain an expression for the coefficients of tdp(t) (43) in the expansion of dP in spherical harmonics:

tdplm�t� �
1

l�l� 1�
�

4p

dVY*
lm{V ´ 7�DVP0� � DVP0�7 ´ V'� � r2�7'�rP0� ´ 7'�vr}jr�rp :

Next we give explicit expressions for coefficients dplm(t) for toroidal and spheroidal oscillation modes (see Unno et al. 1979). Spheroidal

separation of variables gives the following expressions for components of the oscillation velocity in spherical coordinates:

vr � e2ivtU�r�Ylm�u;f�; vu � e2ivtV�r�uYlm�u;f�; vf � e2ivtV�r� 1

sin u
fYlm�u;f�; �B4�

where U and V are the radial and transverse velocity amplitude respectively. Substituting the velocity components (B4) into formula (43),

we obtain the coefficients tdpl 0m 0(t) for spheroidal oscillations:

tdpl 0m 0 �t� �
e2ivt

l 0�l 0 � 1�
�

4p

dVY*
l 0m 0 U YlmrDVP0 � uYlmurP0 � 1

sin2 u
fYlmfrP0

� ��

� V

r
2l�l� 1�YlmDVP0 � uYlmuDVP0 � 1

sin2 u
fYlmfDVP0

� ������
r�rp

: �B5�

The oscillation velocity components for toroidal oscillations are

vr � 0; vu � e2ivtW�r� 1

sin u
fYlm�u;f�; vf � 2e2ivtW�r�uYlm�u;f�; �B6�

where W is transverse velocity amplitude. With the use of formula (B6), the coefficients in the expansion of tdP for toroidal oscillations are

tdpl 0m 0 �t� �
e2ivt

l 0�l 0 � 1�
�
4p

dVY*
l 0m 0 W

1

r sin u
�fYlmuDVP0 2 uYlmfDVP0�

� �����
r�rp

: �B7�

A P P E N D I X C : E X P R E S S I O N S F O R G O L D R E I C H ± J U L I A N C H A R G E D E N S I T Y F O R M O D E S

( 1 , 1 ) , ( 2 , 0 ) , ( 2 , 1 ) A N D ( 3 , 3 )

r11
GJ for 0 < u < p :

r11
GJ � e2ivt

3
���
3
2

q
BW cos�u� sin�u� sin�f�r2

*

8cp3=2r3
: �C1�

r20
GJ for 0 < u , p

2
:

r20
GJ � 2e2ivt 3

���
5
p

BWr2
*�16r 2 3rp � 15 cos�4u�rp 2 12 cos�2u�( 2 4r 1 rp)�

256cp3=2r4
����������������������������������
1 2 �sin�u�2rp=r�

p : �C2�

r20
GJ for p

2
, u < p :

r20
GJ � e2ivt 3

���
5
p

BWr2
*�16r 2 3rp � 15 cos�4u�rp 2 12 cos�2u��24r � rp��

256cp3=2r4
����������������������������������
1 2 �sin�u�2rp=r�

p : �C3�

r21
GJ for 0 < u < p :

r21
GJ � e2ivt

���
5
6

q
BW sin�u� sin�f�r3=2

* �21r � 19rp � 45 cos�2u�rp�
32cp3=2r7=2

: �C4�

r33
GJ for 0 < u , p

2
:

r33
GJ � e2ivt 3

�����
35
p

BW sin�u�3 sin�3f�r5=2
*

256cp3=2r11=2
����������������������������������
1 2 �sin�u�2rp=r�

p �15r2 � 2rrp � 6 cos�4u�r2
* 2 6 cos�2u�rp�25r � rp�

2 6
���
2
p

cos�3u�r3=2
*

����������������������������������������
2r 2 rp � cos�2u�rp

p
�: �C5�
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r33
GJ for p

2
, u < p :

r33
GJ � 2 e2ivt 3

�����
35
p

BW sin�u�3 sin�3f�r5=2
*

256cp3=2r11=2
����������������������������������
1 2 �sin�u�2rp=r�

p �15r2 � 2rrp � 6 cos�4u�r2
* 2 6 cos�2u�rp�25r � rp�

� 6
���
2
p

cos�3u�r3=2
*

����������������������������������������
2r 2 rp � cos�2u�rp

p
�: �C6�
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