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ABSTRACT

We investigate in detail the properties of the stationary force-free magnetosphere of an aligned
rotator assuming the last closed field line is lying in the equatorial plane at large distances from
pulsar. The pulsar equation is solved numerically using a multigrid code with high numerical
resolution, and physical properties of the magnetosphere are obtained with high accuracy. We
found a set of solutions with different sizes of the closed magnetic field line zone and verify
the applicability of the force-free approximation. We discuss the role of electron–positron
cascades in supporting the force-free magnetosphere and argue that the closed field line zone
should grow with time at a slower rate than the light cylinder. This yields a pulsar breaking
index of less than 3. It is shown that models of an aligned rotator magnetosphere with a widely
accepted configuration of the magnetic field, such as the one considered in this paper, have
serious difficulties. We discuss the solutions of this problem and argue that in any case pulsar
energy losses should evolve with time differently than is predicted by the magnetodipolar
formula.
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1 I N T RO D U C T I O N

Since the first works on pulsar magnetospheres, a stationary force-
free magnetosphere of an aligned rotator has been considered as an
underlying model for the real pulsar magnetosphere for more than
30 years. Despite its degenerated character (this ‘pulsar’ does not
even pulse), it is believed to reproduce qualitatively all the main
properties of the real pulsar magnetosphere. For the near-aligned
pulsars it should even give an adequate detailed description. The
structure of the force-free magnetosphere of an aligned rotator can
be described by the solution of a single scalar non-linear partial
differential equation (PDE), the so-called ‘pulsar equation’, derived
by Michel (1973b), Scharlemann & Wagoner (1973) and Okamoto
(1974). This is an equation for the flux of the poloidal magnetic
field. All other physical quantities describing the magnetosphere
are related to the flux function �, the poloidal current J and the
angular velocity of the rotation of the magnetosphere � by algebraic
relations.

An analytical solution of this equation with non-zero poloidal
current seems to exist only for the split-monopole configuration of
the magnetic field (Michel 1991) and for a slightly perturbed split
monopole (Beskin, Kuznetsova & Rafikov 1998). For the dipole
magnetic field an analytical solution for the case of zero poloidal cur-
rent has been found (Michel 1973a; Mestel & Wang 1979), but this
solution is valid only inside the light cylinder (LC). There were sev-
eral works dedicated to the solution of the linearized pulsar equation,
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where the poloidal current and angular velocity were assumed to be
proportional to the magnetic flux function, which made the equa-
tion linear, but they did not lead to the construction of a consistent
model of an aligned rotator magnetosphere (see e.g. Beskin, Gure-
vich & Istomin 1983; Lyubarskii 1990; Beskin & Malyshkin 1998).

The first attempt to solve the non-linearised pulsar equation nu-
merically was made by Contopoulos, Kazanas & Fendt (1999, here-
after CKF). They have shown, for the first time, that there exists a
self-consistent solution with dipole magnetic field geometry near
the neutron star (NS) and magnetic field lines smoothly passing
through the LC. In that work the position of the null point1 was
fixed at the LC and the questions about applicability of the force-
free approximation have been not investigated. The energy losses
of the aligned rotator for the CKF solution have been calculated
by Gruzinov (2005). Goodwin et al. (2004) have studied this prob-
lem more deeply, namely they have searched for the solution of the
pulsar equation when the position of the null point is not fixed at
the LC, but lies at different positions inside the LC. For any posi-
tion of the null point they obtained solutions that smoothly passed
the LC, but like CKF they have not studied the physical properties
of the obtained solutions (e.g. energy losses, applicability of the
force-free approximations, etc.). Their model, however, seems to be
artificial, because they assumed non-zero pressure in the closed field
line zone, which implies continuous energy injection into the closed
field line domain. Recently Contopoulos (2005) addressed the case
where the plasma rotation frequency in the open field line domain

1 The point where the last closed field line intersects the equatorial plane.
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is different from the rotation frequency of the NS. It was shown that
there exists a unique solution of the pulsar equation for an arbitrary
plasma rotation frequency, although a rather simple case when the
plasma rotation frequency is constant has been considered. The ap-
plicability of the force-free approximations in the magnetosphere
of an aligned rotator was considered in Timokhin (2005) and Con-
topoulos (2005), though in the latter work only for the null point
located at the LC.

Recently different approach to the pulsar magnetosphere mod-
elling has been developed by Spitkovsky (2005), Komissarov (2006)
and McKinney (2006). They perform time-dependent simulations
of the pulsar magnetosphere. In Komissarov (2006) the aligned ro-
tator magnetosphere was modelled using a full magnetohydrody-
namic (MHD) code; in McKinney (2006) the same modelling was
performed with force-free code. The code of Anatoly Spitkovsky
allows a 3D time-dependent simulation of the magnetosphere of
inclined rotator to be performed by solving equations of force-free
MHD. In these simulations the existence of the stationary force-free
magnetospheric configuration was rigorously proved for the first
time. Although this approach presents a big step towards the mod-
elling of the real pulsar magnetosphere, in this paper we argue that
it has serous limitations, namely that the properties of cascades sup-
plying particles in the magnetosphere are not incorporated in these
simulations. As will be discussed later, cascades can set non-trivial
boundary conditions on the current density in the magnetosphere. Its
incorporation in time-dependent codes would require some effort.

In this work we investigate the stationary problem, solving the
pulsar equation numerically with high numerical resolution. We as-
sume zero pressure in the closed field line region (cold plasma). As
in all the above-mentioned works on the numerical modelling of
a stationary aligned rotator magnetosphere, we assume a topology
with the current sheet in an open field line domain being in the equa-
torial plane, i.e. configuration with a Y null point – see Fig. 1. This
type of magnetosphere topology had became de facto the ‘standard
model’, so we study it in detail and analyse its properties regarding
many aspects of electrodynamics. Smooth solutions are obtained
for any position of the null point inside the LC. A high numerical
resolution allows one to accurately incorporate the return current

z

R
ot

at
io

n
A

xi
s

Light C
ylinder

separatrix

x

open field lines

[2]

open field lines

[2 ]

closed field lines

[1] Ireturn

I

x0 1

A

Figure 1. Configuration of the magnetic field in the magnetosphere of an
aligned rotator with a Y null point – Y-configuration. After the null point x0

the separatrix goes along the equatorial plane. The volume current I flows in
the open field line zones [2] and [2′]. The current circuit closes somewhere
beyond the LC. There could be a volume return current along some open
field lines, but the largest part of it flows along the separatrix.

flowing along the separatrix (the last closed field line) into the nu-
merical procedure. With the high resolution of the numerical method
used it was possible to calculate accurately the physical properties
of the solutions such as the Goldreich–Julian (GJ) charge density,
the magnetic field, energy losses and pointing flux distribution etc.,
to check the applicability of the force-free approximation and to
consider the compatibility of the model with models of electron–
positron cascades.

The adjustment of the current density in the polar cap cascade
zone of the pulsar to the global magnetospheric structure was de-
bated already in the first 10 years after the discovery of the pulsar
(see e.g. Arons 1979). A concrete mechanism for the current den-
sity adjustment was proposed by Yu. Lyubarskij many years later, in
1992. At that time there was no self-consistent model of the pulsar
magnetosphere and detailed discussion on this subject was diffi-
cult. Here we discuss the coupling between the polar cap cascade
zone and the rest of the magnetosphere in the frame of the self-
consistent model obtained in our simulations. We extend the picture
proposed by Lyubarskij (1992) addressing the evolution of the cur-
rent adjustment mechanism with ageing of the pulsar. We also prove
the necessity of such a mechanism and discuss it in more detail in
the frame of the cascade model proposed by Scharlemann, Arons
& Fawley (1978). We underline the serious difficulties of a model
with a Y null point regarding its compatibility with the space charge
limited flow models of polar cap cascades and briefly discuss other
possible magnetospheric configurations.

The plan of the paper is as follows. In Section, 2 important prop-
erties of the pulsar equation are discussed. The model used in the
current work and numerical method are described in Section 3. Re-
sults of the numerical simulations are presented in Section 4. In
Section 5 we discuss the role of polar cap cascades for the global
structure of the magnetosphere, consider in detail the properties of
the force-free magnetosphere with a Y null point, and highlight
problems of the ‘standard’ model of an aligned rotator magneto-
sphere. A different topology of the magnetosphere, with an X null
point, is briefly discussed at the end of the section. We summarize
the most important results in Section 6.

2 T H E P U L S A R E QUAT I O N

2.1 General equation

Here we adopt the widely used assumption that the entire magne-
tosphere of the NS is filled with plasma. In some works starved
magnetosphere configurations have been debated (see e.g. Smith,
Michel & Thacker 2001; Pétri, Heyvaerts & Bonazzola 2002), where
there are several separated clouds of charged particles near the NS
and no particle outflow, however there are indications that such a
configuration is unstable against diocotron instability (Spitkovsky
& Arons 2002; Spitkovsky 2004). Plasma in the magnetosphere has
to be non-neutral in order to screen the longitudinal (directed along
the magnetic field lines) component of the electric field, induced by
the rotation of the NS. In the presence of the longitudinal electric
field charged particles would be accelerated and their radiation will
lead to copious electron–positron pair production in the super-strong
magnetic field of a pulsar (Sturrock 1971), which finally results in
the screening of the accelerating field.

The charge density necessary to cancel the longitudinal electric
field, the so-called GJ charge density (Goldreich & Julian 1969),
near the neutron star is given by

ρGJ � −Ω · B

2πc
, (1)

C© 2006 The Author. Journal compilation C© 2006 RAS, MNRAS 368, 1055–1072



The force-free magnetosphere 1057

where Ω is angular velocity on neutron star rotation, B is magnetic
field and c is the speed of light. Assuming that the NS has a dipolar
magnetic field, the ratio of the particle kinetic energy density in the
magnetosphere to the energy density of the magnetic field at the
distance r can be estimated as

εkin

εB
∼ (ρGJ/e) mec2γ

(B2/8π)

� 1.4 × 10−11 P−1

(
γ

107

)(
B0

1012 G

)−1 (
r

RNS

)3

, (2)

where e and me are electron charge and mass respectively, RNS is
the neutron star radius, γ is the Lorentz factor of the accelerated
particles, B0 the magnetic field strength in Gauss near the magnetic
poles of the star and P is the period of the pulsar rotation in sec-
onds. All these quantities are normalized to their typical values in
pulsars. This ratio is small (less than 1 per cent) in the region with a
size of ∼103 P−1 radii of the neutron star. It could remain small at
larger sizes, but here the magnetic field deviates substantially from
the dipole field of the NS due to the currents flowing in the magne-
tosphere, and εkin/ε B can be estimated only after a self-consistent
solution for the structure of the magnetosphere is found. Thus, in
the large domain surrounding the neutron star, we can use a force-
free approximation when the particle inertia is neglected and the
equation of motion takes the form

ρE + 1

c
[ j × B] = 0. (3)

Hence, electric field E is perpendicular to the magnetic field B.
Charge density ρ and current density j in equation (3) can be found
from the Maxwell equations (we consider a stationary problem):

∇ · E = 4πρ , (4)

∇×B = 4π

c
j , (5)

With help of these equations, equation (3) can be written as

(∇ · E) E + [∇ × B] × B = 0 . (6)

In force-free electrodynamics (FFE)2 the only possible motion of
charged particles across magnetic field lines is the drift in crossed
electrical and magnetic fields with the velocity

U D = c
E × B

B2
. (7)

Obviously |U D| must be less than c, or equivalently |E| must be less
than |B|. Generally speaking, equation (3) can have solutions where
|U D| > c. The surface, where |U D| reaches c, is commonly referred
as the light surface. Beyond the light surface, where |U D| > c,
the force-free approximation cannot be applied. FFE is not self-
consistent, because particle dynamics is ignored. Hence, each solu-
tion of equation (6) should be always checked for applicability of
the force free approximation.

In the axisymmetric stationary case considered here, the magnetic
field in cylindrical coordinates (� , φ, Z) can be written as

B = ∇�×eφ

�
+ 4π

c
I
�

eφ , (8)

where eφ is the unit azimuthal, toroidal vector. In components

(B� , Bφ, BZ ) =
(

− 1

�
∂Z�,

4π

c
I
�

,
1

�
∂� �

)
. (9)

2 Hereafter we use this shorter name for force-free degenerate electrody-
namics (see e.g. Komissarov 2002; Blandford 2002, and references therein).

The scalar function � is related to the magnetic flux 
mag through
a circle which has its centre at the point (0, Z) and radius � by

mag = 2π�(� , Z ). Thus, lines of constant � coincide with mag-
netic field lines. It could be easily verified that in the force-free
case the scalar function I(� , Z) is constant along magnetic field
lines, i.e

I ≡ I (�) . (10)

I is related to the total current J outflowing through the above men-
tioned circle by J = 2πI (� , Z ).

In the quasi-stationary case the time derivative of B takes the form
(see Mestel 1973)

∂B

∂t
= ∇ × ([Ω × r ]×B) . (11)

Substituting this into the Faraday’s law

∇ × E = −1

c
∂t B , (12)

we get for the electric field

E = −Ω × r

c
× B − ∇V = −�

c
∇� − ∇V , (13)

where V is the non-corotational (see below) part of the electric po-
tential. The first term in (13) is poloidal and only the second term
could make a contribution to the toroidal component. In the axisym-
metric case ∂φV = 0, and hence E is poloidal. In the force-free case
E ⊥ B; from this it follows that E· (∇� × eφ) = 0. Consequently,
E ∝ ∇� and we can write

E = −�F

c
∇� , (14)

or in components

(E� , Eφ, EZ ) =
(

−�F

c
∂� �, 0, −�F

c
∂Z�

)
. (15)

Substituting this expression together with equation (8) into the
formula for the drift velocity (7), we get

U D = �F�eφ − 4π

c
I�F

B2
B ≡ ΩF × r − κ B . (16)

Thus the particle motion is composed from rotation with an angular
velocity �F ≡ �F ez and gliding along magnetic field lines. Hence,
�F is the angular velocity of the rotation of the magnetic field lines.
By substituting equation (14) into the stationary Faraday’s law, one
find∇�F ×∇� =0. This implies that�F is constant along magnetic
field lines:

�F ≡ �F(�) . (17)

Equation (17) is the well-known Ferraro isorotation law.
Finally, substituting E and B from equations (8) and (14) into

equation (6) we get(
1 − �2

F�
2

c2

)
∇2� − 2

�
∂� �

+
(

4π

c

)2

I
dI
d�

− � 2

c2
�F

d�F

d�
(∇�)2 = 0 (18)

This is the Grad–Shafranov equation for the poloidal magnetic field,
the so-called pulsar equation, derived by Michel (1973b), Scharle-
mann & Wagoner (1973) and Okamoto (1974). This scalar PDE is of
elliptical type. It is the poloidal part of the vector equation (6). The
toroidal part of equation (6) is simply the relation (10). The pulsar
equation has two integrals of motion – I and �F. If we know them,
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we can solve this equation for the function � and determine the
poloidal magnetic field. Electric and magnetic fields and all other
parameters of the force-free magnetosphere can be found, because
they are connected to �, I and �F by algebraic relations. In the frame
of FFE, I and �F are free parameters. They could be determined
self-consistently in the full MHD, if electromagnetic cascades, set-
ting boundary conditions, are also taken into account (see Beskin
2005). Nevertheless, one can get useful results in the force-free ap-
proximation. Equation (18) has one singular surface, the so-called
light cylinder, where � = c/�F [�(� , Z )]. As will be shown in
the next subsection, the difference between �F and � is small and
the singular surface has a shape that is similar to a cylinder with the
radius of RLC = c/�.

We normalize the variables � and Z to RLC and introduce new
dimensionless coordinates x ≡ �/RLC and z ≡ Z/RLC. We will
consider the case of dipolar magnetic field on the NS. Thus, near
the star the magnetic field is given by

� = μ
� 2

(� 2 + Z 2)3/2
≡ �0

x2

(x2 + z2)3/2
, (19)

where μ = B 0 R3
NS/2 is the magnetic moment of the NS and � 0 ≡

μ/RLC. We normalize � to � 0 and introduce the dimensionless
function ψ ≡ �/� 0. Instead of the poloidal current function I we
introduce a dimensionless function S ≡ (4π/c)(RLC/� 0)I . The
angular velocity of the magnetic field line rotation is normalized to
the angular velocity of the NS by the relation �F(x , z) ≡ β(x , z) �.
For these dimensionless functions the pulsar equation (18) takes the
form

(β2x2 − 1)(∂xxψ + ∂zzψ)

+ β2x2 + 1

x
∂xψ − S

dS
dψ

+ x2β
dβ

dψ
(∇ψ)2 = 0 . (20)

At the LC the coefficient found by second derivatives goes to zero
and the pulsar equation has the form

2β ∂xψ = S
dS
dψ

− 1

β

dβ

dψ
(∇ψ)2 . (21)

Let us now discuss the properties of the functions �F and S.

2.2 ΩF

From relation (17) it follows that V is constant along a magnetic
field line. Hence, we could rewrite equation (13) in the form

E = −1

c

(
� + c

∂V
∂�

)
∇� . (22)

Comparing this expression with equation (14), we get

�F = � + c
∂V
∂�

. (23)

If there were no potential difference between different magnetic
field lines or between them and the surface of the pulsar, �F would
be equal to �. However, independently of the NS surface properties,
a potential difference along open magnetic field lines will always be
built up in the polar cap region of a pulsar (Ruderman & Sutherland
1975; Scharlemann et al. 1978; Muslimov & Tsygan 1992). This
leads to the formation of a particle acceleration zone, where force-
free approximation is not valid and charged particles are accelerated
by the longitudinal electric field. Electron–positron pairs produced
in the strong magnetic field of the pulsar by photons, emitted by
accelerated particles, screen the accelerating field, and as the pair-
production rate grows very rapidly with distance, the acceleration

zone terminates in a rather thin layer called the pair-formation front
(PFF). Above the PFF the accelerating field is screened, and FFE can
be applied. The size of the acceleration zone is small compared to
the overall size of the magnetosphere; its height varies from ∼100 m
for young pulsars in models with no particle escape from the NS
surface (Ruderman & Sutherland 1975) to 1–2 stellar radii in models
where the particles freely escape the star surface (Scharlemann et al.
1978; Muslimov & Tsygan 1992). Geometrically, this small region
could be neglected in the modelling of the global magnetospheric
structure. The potential difference between the NS surface and the
magnetic field lines should be taken into account by boundary con-
ditions on V , which can be reformulated as boundary conditions on
�F. The potential difference along a magnetic field line in the accel-
eration zone is determined by the position of PFF, which depends
on the local geometry of the magnetic field, close to the NS surface,
and kinetic processes in the electron–positron cascade.

The relative difference of rotation velocities of plasma and NS
can be estimated to an order of magnitude as

δ�

�
≡ � − �F

�

� P
2π

vrot

rpc

� 2.28 × 10−11

(
B0

1012 G

)−1

P2�V , (24)

where �V is the potential difference between the NS surface and
the PFF (in statvolts), rpc �

√
R3

NS�/c is the size of the polar cap,
and v rot = c�V /(B 0r pc) is the linear velocity of the plasma rotation
relative to the NS surface in the acceleration zone – see equation (31)
in Ruderman & Sutherland (1975).

In the model with no particle escape from the NS surface, the po-
tential difference is given by (Ruderman & Sutherland 1975, equa-
tion 23)

�V � 5.24 × 109 P−1/7

(
ρc

106 cm

)4/7 (
B0

1012 G

)−1/7

, (25)

where ρ c is the curvature radius of the magnetic field lines. The
potential difference is measured in statvolts. Substituting these ex-
pressions into equation (24) we get

δ�

�
� 0.1 P13/7

(
ρc

106 cm

)4/7 (
B0

1012 G

)−8/7

. (26)

We see that, for relatively young pulsars with periods P � 0.3 s, this
ratio is very small; ∼1 per cent. Even if the curvature radius of the
field line is of the order of ∼108 cm (typical for a dipole magnetic
field), for P � 0.1 s this ratio is ∼2 per cent.

For the model where particles freely escape the NS surface we
use estimations from Hibschman & Arons (2001). The potential dif-
ference in the acceleration zone (Hibschman & Arons 2001, equa-
tions 17 and 18)

�V h>rpc � 9.87 × 109 P−2

(
B0

1012 G

)
h , (27)

�V h<rpc � 1.11 × 1012 P−3/2

(
B0

1012 G

)
h2 . (28)

Here h is the height of PFF above the NS surface in units of RNS. The
above estimations for accelerating potential are for the cases where
h > r pc and h < r pc, respectively. The potential differences are in
statvolts. The heights of the PFF position due to photons emitted by
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non-resonant inverse Compton scattering (NIC), curvature radiation
(CR) and resonant inverse Compton scattering (RIC) of accelerated
particles are given by

hNIC � 0.40 P

(
B0

1012 G

)−1

T −2
6 fρ (29)

hc
NIC � 0.12 P1/4

(
B0

1012 G

)−1/2

T −1
6 f 1/2

ρ (30)

hCR � 0.68 P19/12

(
B0

1012 G

)−5/6

f 1/2
ρ (31)

hRIC � 12

(
B0

1012 G

)−7/3

T −2/3
6 fρ , (32)

see Hibschman & Arons (2001), equations (34), (32), (42) and (37)
correspondingly. Label ‘c’ corresponds to the model where the NS
surface is colder than the polar cap of the pulsar, heated by the return
current. T6 is the temperature of the polar cap in units of 106 K.
The radius of curvature of the magnetic field lines is a factor fρ

times the radius of curvature of a dipole field, i.e. fρ ≡ ρ c/ρ
dip
c =

P−1/2 ρ c/(9.2 × 107 cm).
According to Hibschman & Arons (2001), in most pulsars the PFF

height is set by NIC photons. In high-voltage pulsars, ones with the
shortest periods (i.e. millisecond and youngest pulsars with P � 0.3
s), the PFF is set by the curvature photons. In both of these cases the
resulting height of the PFF is larger than the size of the polar cap, h
> r pc. RIC is important only for high field pulsars, with B � 1.2 ×
1013 G, in this case h 
 r pc. Taking this into account we get(

δ�

�

)
NIC

� 0.09 P fρ T −2
6

(
B0

1012 G

)−1

(33)

(
δ�

�

)c

NIC

� 0.027 P1/4 f 1/2
ρ T −1

6

(
B0

1012 G

)−1/2

(34)

(
δ�

�

)
CR

� 0.023

(
P

0.3 s

)19/12

f 1/2
ρ

(
B0

1012 G

)−5/6

(35)

(
δ�

�

)
RIC

� 0.034 P1/2 f 2
ρ T −4/3

6

(
B0

1.2 × 1013 G

)−14/3

. (36)

The temperature of the polar cap T due to the heating by return
particles is of the order of 106 K. If the NS temperature is higher
than this value, formula (33) should be applied; in the opposite case,
formula (34) should be used. The temperature of the NS surface
depends on the NS cooling model, and for a rather young pulsar it
should be higher than 106 K. Thus, formula (33) is applicable for
young, hot pulsars, where it gives for δ�/� � 0.01. Hence, in the
model with free particle escape, the ratio δ�/� is of the order of a
few per cent for the majority of pulsars.

We see that 1 − β is of the order of a few per cent for most pulsars
in the model with free particle escape and for young pulsars in the
model with no particle escape. We restrict ourselves to considering
only pulsars where 1 − β is small. Then the last term in pulsar
equation (38) is small in comparison with other terms and can be
neglected. In the rest of the paper we assume

�F ≡ � . (37)

This assumption simplifies the pulsar equation (20), which now has
the form

(x2 − 1)(∂xxψ + ∂zzψ) + x2 + 1

x
∂xψ − SS′ = 0 , (38)

where S′ ≡ dS/dψ . Non-linearity in this equation is now present
only in the term with the poloidal current function S.

2.3 Poloidal current S

In contrast to �F, being set by kinetic processes in the polar cap, S
depends on the global structure of the magnetosphere. Both inside
and outside the LC the pulsar equation (38) is a regular non-linear
PDE of elliptic type. At the LC this equation under assumption (37)
has the form

∂xψ = 1

2
SS′ . (39)

If the function S is known, condition (39) can be considered as a
Neumann-type boundary condition at the LC. If boundary condi-
tions are set both inside and outside the LC, the equation should
have an unique solution in both regions. Generally speaking, for an
arbitrary function S the solutions of the pulsar equation inside and
outside the LC will not match:

lim
x→1−

ψ �= lim
x→1+

ψ . (40)

Therefore a smooth3 solution is possible only for a specific function
S and the problem of finding a solution of the pulsar equations
becomes an eigenvalue problem for the function S.

The position of the LC is not known a priori. For values of �F

different from � it has a rather complicated form and, even if �F(�)
as a function of � is given by a model of the polar cap cascade,
the position of the LC as a function of x and z has to be found
self-consistently together with the solution of the pulsar equation.
However, as was stressed above, for most pulsars the deviation of
the LC from a cylinder with radius c/� is of the order of a few per
cent or less. Hence, a solution of equation (38) should give a very
good approximation to the real magnetosphere of an aligned rotator.

The other open question regarding the poloidal current term in the
pulsar equation is the topology of the magnetosphere. In works of
the Lebedev Physical Institute group (see e.g. Beskin, Gurevich &
Istomin 1993; Beskin & Malyshkin 1998), a geometry with an X null
point has been assumed (hereafter X-configuration, see Fig. 13a). In
that case the pulsar equation should be solved in three different do-
mains, separated by the current sheets. The positions of the point A
(and A′) is a free parameter of such a model. In setting the positions
of these points and the point x0, one fixes the boundaries and gets
a well posed, although complicated, problem. Such topology of the
aligned rotator magnetosphere was criticized by Lyubarskii (1990),
because the only source of the magnetic field in the magnetosphere
is the pulsar itself, and in this case it is not clear what would be
the source of the magnetic field in the outer domain. The most fre-
quently considered topology of the aligned rotator magnetosphere
implies a Y-like null point (hereafter a Y-configuration, see Fig. 1).
In this case the only available free parameter in the model is the po-
sition of the null point x0. By fixing the position of this point we fix
the whole geometry of the magnetosphere. Thus we have an elliptic
equation with boundary conditions set at all boundaries of the closed

3 If the solution is continuous, its smoothness follows from equation (39),
because SS′ is the same at both sides of the LC.

C© 2006 The Author. Journal compilation C© 2006 RAS, MNRAS 368, 1055–1072



1060 A. N. Timokhin

L
ightC

ylind
er

closed field lines

separatrix

current sheet

open field lines open field lines

x0 1xNS xmax

zNS

zmax

ψ = ψdip

x∂xψ + z∂zψ = 0

x
∂

x ψ
+

z
∂

z ψ
=

0

ψ
=

0

∂zψ = 0 ψ = ψ(x0)
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domains with known positions of the boundaries. We wish to em-
phasize here that the choice of the topology of the magnetosphere is
an additional assumption in the frame of the stationary problem. In
the following we investigate in detail the force-free magnetosphere
of an aligned rotator assuming topology with a Y-like neutral point.

3 N U M E R I C A L M O D E L

We solve equation (38) in a rectangular domain, see Fig. 2. The
boundary conditions are as follows. On the rotation axis (z-axis)

ψ(0, z) = 0, zNS < z � zmax . (41)

At the equatorial plane, in the closed field line zone

∂zψ(x, 0) = 0, xNS < x < x0 , (42)

following from the symmetry of the system. In the open field line
domain

ψ(x, 0) = ψ(x0, 0), x0 < x � xmax , (43)

i.e. the separatrix lies in the equatorial plane. Close to the NS the
magnetic field is assumed to be dipolar, so for x = x NS, 0 � zNS

and 0 � x � x NS, z = zNS

ψ(x, z) = ψdip(x, z) ≡ x2

(x2 + z2)3/2
. (44)

Magnetic surfaces should become radial at large distances from the
NS, see Ingraham (1973). On the other hand, in the calculations of
Contopoulos et al. (1999), where the pulsar equation was solved in
the unbounded domain, with boundary conditions at infinity imply-
ing the finiteness of the total magnetic flux, the magnetic surfaces
became nearly radial already at several sizes of the LC. Rather dif-
ferent outer boundary conditions, with a finite magnetic flux inside
the LC at infinity, have been used by Sulkanen & Lovelace (1990).
However, the time-dependent simulations of Komissarov (2006),
Spitkovsky (2005) and McKinney (2006) provide strong evidence
for the correctness of the outer boundary conditions when magnetic
surfaces at large distances from the NS are radial. Thus, at the outer
boundaries of the calculation domain for 0 < x � x max, z = zmax

and x = x max, 0 < z � zmax

x ∂xψ + z ∂zψ = 0. (45)

At the LC two conditions should be satisfied: (i) the solution
should be continuous,

ψ(x → 1−, z) = ψ(x → 1+, z) , (46)

and (ii) the condition (39). These conditions together provide a
smooth transition through the LC. Following Goodwin et al. (2004)
we expand the function ψ at the LC in the Taylor series over x,
imposing the continuity condition (46). By substituting the result-
ing expansion into the pulsar equation (38) and retaining the terms
up to the second order we get the following approximation to the
pulsar equation at the LC:

4∂xxψ(1, z) + 2∂zzψ(1, z) = ∂x [SS′(1, z)] . (47)

This equation is nothing more than a reformulation of the smooth-
ness conditions (46) and (39), valid for the first- and second-order
terms in the Taylor series expansion of ψ . As the numerical scheme
we have used is of the second order, this approximation, as well as its
discretization, has the same accuracy as the discretized equation in
the rest of the numerical domain. In the course of the relaxation
procedure we are trying to satisfy the conditions (46) and (39),
i.e. we solve equation (47) at the LC instead of the original equa-
tion (38), which is singular there. Equation (39) is used for the de-
termination of the poloidal current term SS′(ψ) along the open field
lines.

In the closed field lines zone, ψ > ψ last ≡ ψ(x 0, 0), there is no
poloidal current, so SS′ ≡ 0. The return current needed to keep the
system charge neutral flows along the separatrix. In the open field
line domain for x > x0, the presence of an infinite thin current sheet
is already incorporated into the solution procedure by setting the
boundary condition (43). However, when the separatrix goes above
the equatorial plane we have to model the current sheet. We assume
that the return current is flowing along the field lines corresponding
to the magnetic surfaces [ψ last, ψ last + dψ]. The total return current
flowing in this region is calculated by integrating the term SS′:

Sreturn =
√

2

∫ ψlast

0

SS′ dψ . (48)

We model the poloidal current density distribution over ψ in the
current sheet ψ last � ψ � ψ last + dψ by an even-order polynomial
function going to zero at the boundaries of the current sheet

S′(ψ) = A

{[
ψ −

(
ψlast + dψ

2

)]2k

−
(

dψ

2

)2k
}

, (49)

where the constant A is determined from the requirement∫ ψlast+dψ

0
S(ψ) dψ = 0 and k is an integer constant. The pulsar

equation is then solved in the whole domain including the current
sheet. The current sheet cannot be considered as a force-free domain,
but in doing so we correctly calculate the influence of the current
sheet on to the global magnetospheric structure, even though the ob-
tained values of the physical parameters inside the current sheet are
fake.

We developed a multigrid numerical scheme for the solution of
equations (38) and (47). These equations have been discretized
using the five-point Gauss–Seidel rule. The coarsest numerical
grid was constructed in such a way that the LC is at the cell
boundaries. Each subgrid was obtained by halving the previ-
ous grid. Cell sizes in the region x < 1, z < 1 are smaller
in order to accurately calculate the current along the separatrix.
We use the Full Approximation Scheme with V-type cycles (see
Trottenberg et al. 2001). The Gauss–Seidel scheme was used as
both a smoother and a solver at the coarsest level. At each itera-
tion step, both in the solver and the smoother, the new value of
the poloidal current term SS′(1, z) was calculated from the relation
(39) at each point of the LC. Then a piece-polynomial interpola-
tion of SS′ in the interval (0, ψ last) was constructed and the return
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Table 1. Properties of obtained solution with x 0 = 0.7 and x0 approaching
the LC for different values of numerical parameters.

Numerical parameters Results
dψ 2k (x max, zmax) (x NS, zNS) ψ last W

x 0 = 0.7
0.03 2 (8, 7) (0.0667, 0.056) 1.717 1.864
0.03 4 (8, 7) (0.0667, 0.056) 1.712 1.853
0.015 2 (8, 7) (0.0667, 0.056) 1.697 1.821
0.03 2 (8, 7) (0.0333, 0.028) 1.720 1.870
0.03 2 (16, 14) (0.0667, 0.056) 1.717 1.864
x 0 = 0.99
0.08 2 (16, 14) (0.06, 0.06) 1.255 0.977
x 0 = 0.99231
0.04 2 (5, 5) (0.0462, 0.0525) 1.230 0.939

current distribution was calculated according to the formulae (48)
and (49). Then for each point (x, z) in the calculation domain the
current term was calculated as SS′(x , z) = SS′[ψ(x , z)], and the
new iteration was started. Thus we solved the pulsar equation in the
whole domain while avoiding a very time-consuming matching of
the solutions inside and outside the LC, as was done by Contopoulos
et al. (1999), Contopoulos (2005) and Gruzinov (2005), though in
Contopoulos (2005) this matching procedure has been accelerated.
As a starting configuration, a dipolar magnetic field everywhere
was used. We did not encounter any problems with the conver-
gence of the scheme for any value of x0, but for x0 very close to 1
the convergence rate becomes essentially slower. The typical num-
ber of points we used along each direction in the calculations was
3000–6000.

We performed calculations for different values of numerical pa-
rameters in order to proof the independence of the results on the
domain sizes (x max, zmax), the ‘NS size’ (x NS, zNS), the width of the
current sheet dψ and the form of the current distribution (parame-
ter k), as well as on the iteration procedure stopping criteria and the
number of points in both directions. Changes in convergence criteria
and the decrease of the cell size from those used in most of our cal-
culations did not produce relative changes in solutions greater that
10−4. In Table 1 values of ψ last and the energy losses of an aligned
rotator W (see next section), obtained in computations with differ-
ent values of listed numerical parameters, are shown for x 0 = 0.7
and x0 approaching the LC. One can see that, with an accuracy of
the order of a few per cent, obtained solutions are independent of
particular values of the numerical parameters. Solutions with other
x0 values show similar behaviour.

4 R E S U LT S O F C A L C U L AT I O N S

Our choice of the boundary conditions at the NS, equation (44),
corresponds to the case when the dipole magnetic moment of the
star μ is parallel to the angular velocity vector Ω, μ||Ω. In this case
the GJ charge density in the polar cap of the pulsar is negative and
electrons flow away from the polar cap. The poloidal current S in
the open field line zone is negative (see the definition of the poloidal
current in equation 8). In the case of an anti-aligned rotator, i.e. μ
is antiparallel to Ω, all signs of the physical quantities related to the
charge and current should be reversed.

Calculations have been performed for the following values of
x0: 0.15, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.99 and 0.992.
A unique solution has been found for each of the above x0 values.

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Ψ /Ψ
last

I 
/ 
I M

ic
h
e
l(Ψ

la
s
t)

Michel
x

0
=0.3

x
0
=0.6

x
0
=0.8

x
0
=0.992

Figure 3. The poloidal current distribution in the open field line zone nor-
malized to the poloidal current from the corresponding Michel solution.
Inside the current sheet, for ψ last � ψ � ψ last + dψ (not shown here), the
poloidal current decreases to 0.

Let us consider in detail the physical properties of the obtained
solutions.

4.1 Poloidal current

The poloidal current density S, calculated from the formula (48),
does not deviate by more than ∼20 per cent from the values given
by Michel’s solution (Michel 1973b)

S = −ψ

(
2 − ψ

ψlast

)
, (50)

see Fig. 3. The smaller x0, the smaller this deviation. The structure
of the magnetosphere depends strongly on the poloidal current dis-
tribution. In solutions with x 0 � 0.6 there is a domain in the open
filed line zone, where volume return current flows. However, only
a small part of the return current flows there; the main part flows
inside the current sheet. The size of this domain gets smaller with
decreasing x0, and for x 0 � 0.6 the return current flows only along
the separatrix, see Fig. 4. Qualitatively this property of the solution
could be explained as follows. At the LC the condition (39) is satis-
fied, so if ∂xψ changes sign the same occurs with the current term
SS′, and the poloidal current density changes sign. Magnetic field
lines close to the null point are bent towards the equatorial plane,
but at large distances they become radial. Therefore, for x0 close to
1∂xψ (1, z) < 0 for some field lines and volume return current must
flow along them. When x0 decreases, more and more magnetic field
lines at the LC will be bent away from the equatorial plane until
there will be no lines bent towards the equator. If field lines at the
LC bend from the the equatorial plane ∂xψ (1, z) > 0 and there is
no volume return current along such field lines.

A convenient representation of the current density in the closed
field line zone could be given by the current density distribution in
the polar cap j pc. In our notations the current density in the polar
cap of pulsar normalized to the GJ current density j GJ ≡ ρGJc is
given by (see Appendix A, equation A6)

jpc = | jGJ| 1

2
S′

[(
θ

θpc

)2

ψlast

]
, (51)

where θ/θ pc is the colatitude normalized to the colatitude of the
polar cap boundary θ pc; it is connected to the function ψ through
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Figure 4. Global structure of the magnetosphere for x 0 = 0.992 – top panels, x 0 = 0.7 – middle panels, x 0 = 0.2 – bottom panels. The magnetic flux surfaces
are shown by thin solid lines, the labelled vertical lines are contours of the drift velocity and the grey area is the domain where the GJ charge density is positive.
The dashed line separates regions with direct (above the line) and return (below the line) volume currents. The separatrix is shown by the thick solid line. Almost
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x-axis (horizontal) and z-axis (vertical) are measured in units of LC radius RLC.

the relation θ/θpc = √
ψ/ψlast. In Fig. 5 j pc is shown for several

solutions with different x0 values. The current density never exceeds
the corresponding GJ current density and goes to zero at the polar
cap boundary. The latter property is the consequence of the assumed
topology of the magnetosphere. Indeed, from the condition at the
LC, equation (39), the current density along a given magnetic sur-
face is proportional to the partial derivative ∂xψ at the LC, but in
configurations with the Y null point ∂xψ = 0 for ψ = ψ last. The
deviation of the current density j pc from the GJ current density
increases close to the polar cap boundaries with increasing x0. For
solutions with x 0 � 0.6 the current density j pc changes sign at some
point near the boundary. On the other hand, j pc never exceeds the
corresponding Michel current density and approaches jMichel when
x0 decreases.

4.2 Drift velocity and force-free approximation

The drift velocity in our notations is given by

uD ≡ |U D|
c

= ��

c
Bpol

B
= x√

1 + S2

(∂x ψ)2+(∂zψ)2

, (52)

B pol is the poloidal component of the magnetic field. The light
surface, i.e. the surface where the force-free approximation breaks
down, coincides with the surface, where uD = 1. We verified the
applicability of the force-free approximations in each case. For most
of the cases the calculations have been performed in the domain with
x max = 8, zmax = 7, but for x 0 = 0.2, 0.7, 0.992 we also performed
calculations with x max = 16, zmax = 14. In all cases the light surface
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is located somewhere outside of these domains (see Fig. 4). The drift
velocity distribution for the solutions with x0 close to 1, even at large
distances from the null point, differs significantly from that in the
corresponding Michel solution (the solution with the same ψ last),
where the drift velocity is the function of only the x-coordinate. On
the other hand, when x0 decreases, uD approaches the values from
the corresponding Michel solution.

4.3 Charge distribution in the magnetosphere

The GJ charge density in the magnetosphere in our notation is
given by

ρGJ = ρ0
SS′ − 2

x ∂xψ

1 − x2
, ρ0 ≡ μ

4πR4
LC

. (53)

Close to the rotation axis the GJ charge density is negative and
with increasing of the colatitude it becomes positive. While for the
solutions with x 0 � 0.6 the domain of positively charged plasma
extends to infinity, for the solutions with smaller x0 values it becomes
finite (cf. plots for x 0 = 0.2 with other plots in Fig. 4). The reason
for this is as follows. At large distances from the LC the magnetic
field lines becomes radial, so ∂xψ is always greater than 0. Hence,
there only the term SS′ is responsible for changing of the charge
density sign. However, SS′ for x 0 � 0.6 never changes sign (see
left-hand plots in Fig. 4). For the same reason the volume return
current always flows trough the positively charged domain. Close to
the NS it passes trough the layer where charge density changes sign
(see right-hand plots in Fig. 4). At this layer the so-called outer-gap
cascade should develop (see e.g. Cheng, Ruderman & Sutherland
1976; Takata, Shibata & Hirotani 2004).

The force-free solution fixes not only the volume charge density,
but also the charge density of the current sheet. As the electric field
at opposite sides of the current sheet is different, the current sheet
must have non-zero surface charge density. In Fig. 6 we plot the
linear charge density � of the current sheet as a function of distance
l along the separatrix

� ≡ 2π�σ , (54)

where σ is the charge density of the current sheet. � represents the
total charge of a volume that is co-moving with particles flowing
along the separatrix with constant speed, emitted at the same time
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Figure 6. � – linear charge density of the current sheet (see text) as a func-
tion of the distance l along the current sheet. � is normalized to 0.5 μ/R2

LC.
l is measured in units of RLC. The points marks the position of the corre-
sponding null point. Note the jump in the charge density at these points. The
dotted line corresponds to � = 0.

(either at the NS or at ‘infinity’). � ≡ constant would imply a
constant velocity flow of particles of one sign. However, for each
solution � is a non-monotonic function with discontinuity in the
null point. Such a complicated dependence of � on l implies some
non-trivial physics connected with particle creation in the current
sheet, which is discussed in the next section.

This complicated dependence of the current sheet charge density
is easy to understand if one consider the so-called ‘matching condi-
tion’ at the separatrix. As was shown by Lyubarskii (1990),4 at the
current sheet the following condition for the electric and magnetic
field in closed (c) and open (o) field line domains should be satisfied

E2
c − B2

c = E2
o − B2

o . (55)

This follows from the integration of equation (6) across the current
sheet. In the closed field line zone there is no toroidal magnetic field.
It follows from equations (14) and (8) that the electric field

E = x Bpol . (56)

Substituting this equation into equation (55), we get

B2
pol, c − B2

pol, o = B2
φ,o

1 − x2
. (57)

From this and equation (56) it follows that E c > E o and that the
charge density in the current sheet between the closed and open field
line domains,

σ = 1

4π
(Eo − Ec) , (58)

is always negative. On the other hand, from the symmetry of the
system – the electric field in regions [2] and [2′] in Fig. 1 has different
directions – the charge density of the current sheet in the open field
line zone

σ = 1

2π
Eo (59)

is always positive.
The total charge of the system, i.e. the charge of the NS, the

magnetosphere and the current sheet together, must be zero. The
boundary condition (45) implies that the total flux of electric field

4 See also Okamoto (1974), equation (69).
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through the sphere of a large radius is zero, hence the total charge of
the system must be zero. In Fig. 7 the total charge inside the sphere
centred at the coordinate origin is plotted as a function of its radius.
The total charge of the system goes rapidly to zero at large distances
from the NS. This plot could be also considered as an additional test
of the numerical procedure, as the conservation of the total charge
is not incorporated into the numerical scheme.

4.4 Energy losses

Energy losses of the aligned rotator in our notations are given by
the formula

W = |Wmd|
∫ ψlast

0

S dψ , (60)

where |W md| is the absolute value of magnetodipolar energy losses,
here defined as

|Wmd| = B2
0 R6

NS�
4

4c3
; (61)

see Appendix B, equations (B7) and (B5). In the obtained set of so-
lutions, W is a function of x0. As x0 decreases, the amount of open
magnetic field lines increases and, as the poloidal current depen-
dence on ψ does not change substantially, the energy losses of an
aligned rotator increase with decreasing x0, see Fig. 8. The obtained
dependence of energy losses W on the position of the null point x0

could be surprisingly well fitted by a single power law:

W (x0) ≈ −0.94 x−2.065
0 |Wmd| . (62)

This formula is similar to the one obtained from analytical estima-
tions using the Michel current distribution (see Appendix B, equa-
tion B9)

W (x0) ≈ −2

3
x−2

0 |Wmd| . (63)

The angular distribution of the energy flux (see Appendix B,
equation B4) is

dW
dω

= |Wmd|
4π

S

√
x2 + z2

x
(z ∂xψ − x ∂zψ) . (64)
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Figure 8. Energy losses of the aligned rotator as a function of x0 in units of
the corresponding magnetodipolar energy losses |W md|.
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last |W md|/(4π), see equations (64) and (65). The distributions shown
here are taken at R = 4RLC and correspond to their asymptotic forms (see
the text).

In Fig. 9 this distribution is shown for several solutions with different
x0. The Poynting flux distribution quickly reaches its asymptotic
form at distances from the null point of the order of 1–2 RLC. For
example, in the case of x 0 = 0.99 distributions taken at R = 4 and
R = 14 differ by no more than ∼3 per cent. For configurations with
smaller x0 values this deviation is even less. The smaller the value
of x0, the closer the angular energy flux distribution to the angular
distribution in Michel’s solution:

dW
dω

= −|Wmd|
4π

ψ2
last sin2 θ , (65)

because for small x0 the solution at large distances is very close
to the Michel solution. In spite of recent works on modelling of
jet-torus structure seen in Crab and other plerions (see Komissarov
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& Lyubarsky 2003; Bogovalov et al. 2005), we note that magneto-
sphere configurations with larger x0 would support more strongly the
development of instabilities due to more asymmetric energy deploy-
ment into the plerion, providing a more pronounced disc structure.

4.5 Total energy of the magnetosphere

The total energy of electric and magnetic fields in the magneto-
sphere � ≡ ∫

(B2 + E2)/(8π)dV would give information on which
configuration the system tries to achieve; the configuration with the
minimal possible energy. Obviously for the obtained solutions we
could calculate the energy only in a finite domain. Another problem
is the very rapid increase of the magnetic field in the central parts,
as r−3. As the magnetic field close to the NS is dipolar for each
configuration, we calculate the total energy in a domain excluding
the central parts. In order to verify the independence of the result on
domain sizes we calculate the total energy in the magnetosphere in
two different domains for each solution. These domains are defined
as 0.2 � x � 5, 0.2 � z � 5 and 0.075 � x � 2.5, 0.075 � z � 2.5
The results are plotted as a function of x0 in Fig. 10. The total energy
of the magnetosphere increases with decreasing x0, so the magne-
tosphere will try to achieve the configuration with the maximum
possible x0.

4.6 Solution with x0 → 1

The special case of x 0 → 1 has been considered by several authors,
because it was believed to be the real configuration of a pulsar mag-
netosphere (Lyubarskii 1990; Contopoulos et al. 1999; Uzdensky
2003; Gruzinov 2005; Komissarov 2006). This case is peculiar in
the sense, that magnetic field in the closed filed line zone diverges
in the Y null point. Indeed, from equation (57) it follows that near
the null point, when x 0 → 1

Bpol ≈ μ

R3
LC

|S|√
2(1 − x)

. (66)

While the presence of the singularity was noted by Lyubarskii (1990)
and Uzdensky (2003), Gruzinov (2005) firstly realized that such
singularity is admitted, as it does not lead to the infinite energy of
magnetic field in the region surrounding the null point. In Fig. 11
the strength of the poloidal magnetic field along the x-axis is plotted
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Figure 11. Poloidal magnetic field strength in the equatorial plane as the
function of x. B pol is normalized to μ/R3

LC. By the dashed line the theo-
retical prediction for B pol(x , 0) is shown for the solution with x 0 = 0.992,
equation (66).

for different solutions. By the dashed line the relation (66) is shown.
We see that when x0 approaches the LC the magnetic field inside the
closed zone begins to grow close to the null point. This increase is
more pronounced when the thickness of the current sheet decreases.
Agreement between the curve for x 0 = 0.992, dψ = 0.4 and the
dashed line is quite good.

Gruzinov (2005) solved an equation for the separatrix in the vicin-
ity of the null point x 0 = 1 and have found that the angle at which
separatrix intersects the equatorial plane should be 77.3◦. In our
calculations we found this angle to be ≈78◦ for x 0 = 0.992, dψ =
0.04 and ≈70◦ for x 0 = 0.99, dψ = 0.08. So, our numerical solution
shows good agreement with the analytical one. Energy losses found
by Gruzinov (2005) are 1.0±0.1, what quite good agrees with values
for W from Table 1. Value of ψ last = 1.23 calculated by Contopoulos
(2005) coincide with ones from Table 1 and is close to ψ last = 1.27
obtained by Gruzinov (2005), although both of these results have
been obtained with codes having worse numerical resolution than
the code used in this work.

5 D I S C U S S I O N

It seems natural to assume that force-free configurations are energet-
ically preferably in comparison with configurations where there are
geometrically large volumes with parallel electric field.5 Accepting
this, we conclude that the magnetosphere of a pulsar should evolve
through a set of force-free configurations. It does not necessarily
mean that for a relatively short transition time the system could not
be essentially non-force-free, but rather that for most of the time the
magnetosphere of an active pulsar is force-free.

5.1 Polar cap cascades and force-free magnetosphere

In a force-free configuration the current density distribution is not
a free parameter; it is set by the structure of the magnetosphere, for
example, by the value of x0 in the case of Y-configuration. How-
ever, the current in the magnetosphere of the pulsar is supported by
electron–positron cascades in the polar cap, i.e. most of the current
carriers are produced in the magnetosphere and are not supplied

5 However, see e.g. Smith et al. (2001) or Pétri et al. (2002).
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from external sources. Independently of neutron star crust proper-
ties, i.e. whether or not charged particles could be extracted from
the surface, in the polar cap of young pulsars electron–positron
cascades are developed, filling the magnetosphere of the star with
particles (Ruderman & Sutherland 1975; Scharlemann et al. 1978;
Muslimov & Tsygan 1992). Also, these particles are necessary in
order to support the MHD-like structure of the magnetosphere. The
current in the magnetosphere flows trough this cascade region, hence
the cascade, the properties of which depend on the local magnetic
field structure, has to adjust to the global properties of the magne-
tosphere too, namely to the current density flowing through it. We
focus here on the case of stationary cascades. The hypothesis about
the stationarity of the polar cap cascades, that the temporal variation
of the accelerating electric field over the whole polar cap is much less
than the accelerating field itself, is widely adopted (e.g. Daugherty
& Harding 1982; Ruderman & Sutherland 1975). We briefly also
address the case of essentially non-stationary cascades (Levinson
et al. 2005).

As was shown by Lyubarskij (1992), for current adjustment in
the stationary cascades a particle inflow from the magnetosphere
into the cascade region is required. The typical current density, self-
consistently supported by stationary polar cap cascades, is close to
j GJ. For current densities, both larger or smaller than the GJ one, a
particle inflow is necessary. The source of inflowing particles needed
for current adjustment could be outer gap cascades, operating at the
surface where the GJ charge density changes sign (Cheng et al.
1976). On the other hand, inflowing particles could be provided by
the pulsar wind, where some outflowing particles could be reversed
back to the NS due to momentum redistribution or due to a small
residual electric field arising as the magnetosphere tries to support
a force-free configuration. However, the zone where particles could
flow toward the NS is limited by the LC (see Appendix C). Thus
the source of inflowing particles must be inside the LC.

For Ruderman & Sutherland (1975) cascades, when particles can
not be extracted from the NS surface and are produced in the dis-
charge zone, the adjustment mechanism works as follows. An inflow
of positrons increases the current density, and an inflow of electrons
decreases it. In the first case the inflowing positrons decrease the
charge density in the PFF and more electrons are necessary to adjust
the charge density to the GJ value. These additional electrons, to-
gether with inflowing positrons, increase the current density. When
there is an inflow of electrons, fewer primary electrons are nec-
essary in order to support the GJ charge density at the PFF. In-
flowing electrons are turned back at the PFF, and compensate the
inflowing electric current. The outflowing current is only due to the
primary electrons from the discharge zone, so the current density is
less than j GJ.

If particles could almost freely escape from the NS crust, the pul-
sar must operate in the so-called space charge limited flow (SCLF)
regime and the current density cannot be essentially less then j GJ.
Indeed, the charge density in the discharge region, below the PFF,
is close to ρGJ and the accelerating electric field forces charges
to flow out with relativistic velocities (Scharlemann et al. 1978;
Muslimov & Tsygan 1992). For cascades operating in the SCLF
regime the mechanism of current adjustment works similarly for
inflowing positrons. The particle inflow could increase the current
density, but not decrease it. Only when the accelerating electric field
is almost completely screened could the current density be signif-
icantly less than j GJ. However, in order to screen this accelerating
field, charged particles flowing in from the magnetosphere must pen-
etrate practically up to the NS surface, i.e. they must have Lorentz
factors comparable to the Lorentz factors of particles accelerated in

the polar gap. In other words, somewhere in the magnetosphere in-
side the LC there should be zone(s) where particles are accelerated
as effectively as they would be accelerated in the polar cap. Either
the accelerating field there should be comparable to the one in the
polar cap or the size of this zone would be essentially larger than
some NSs radii. Both seem to be inappropriate.

In both of these cases, in order to support the volume return cur-
rent which flows in the direction opposite to j GJ, the accelerating
field in the polar cap discharge zone must be completely screened
and the particles filling the magnetosphere along magnetic field
lines with return volume current must be produced somewhere in the
magnetosphere. The accelerating electric field in the polar cap zone,
being proportional to the magnetic field strength, is much stronger
than any possible accelerating electric field far from the NS. Hence,
the presence of the return volume current in the force-free magneto-
sphere seems to be incompatible with the force-free configurations
of the magnetosphere, because the acceleration of particles to the
required Lorentz factors with a much weaker electric field requires
large non-force-free domain(s) in the magnetosphere. The situation
with non-stationary cascades is poorly investigated; currently there
is only one work dedicated to detailed studies of significantly non-
stationary cascades – Levinson et al. (2005). However, we see no
way how it would be impossible to support both particle production
in the polar cap cascade and an average current that has an opposite
direction to the direction of the accelerating electric field; see also
Arons (1979).

In our consideration we assumed that the GJ charge density in
the polar cap does not deviate substantially from its canonical value
(Goldreich & Julian 1969)

ρGJ = −�B0

2πc
. (67)

This is the case when the boundary of the polar can be considered
as equipotential, i.e. having very high conductivity. However, if its
conductivity is very low and the surface charge density distribution
at the separatrix in the polar cap is different from the one in the force-
free solution, the GJ charge density can substantially deviate from
values given by formula (67). In this case the characteristic current
density flowing trough the cascade region would be different from
the canonical value of −(�B 0)/(2π) and, in principal, it could ap-
proach the values required by the global magnetospheric structure,
i.e. the problem of current adjustment could be solved by modifying
ρGJ instead of adjusting the deviation of j from j GJ. Let us analyse
this possibility. The largest part or the whole of the return current
flows along the separatrix. It could be electrons returning from the
region behind the light surface6 or ions outflowing from the NS sur-
face (see e.g. Spitkovsky & Arons 2004). If there are electrons in the
current sheet close to the NS, then a substantial deviation of the elec-
tric field from the force-free value will give rise to electron–positron
cascades that produce enough particles to make the separatrix near
equipotential. Only ions, which emit photons capable to produce
electron–positron pairs less effectively, could support an essentially
non-equipotential polar cap boundary. However, as was mentioned
before, each particularly force-free configuration fixes the surface
charge density distribution along the current sheet everywhere where
it is applicable. Independently of the detailed structure of the polar
cap zone, the surface charge density along the separatrix between
closed and open field lines is negative, i.e. there must be enough
electrons there, or the magnetosphere would be not force-free (see

6 The current sheet is not a force-free domain and considerations from
Appendix C are not valid here.
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Section 4.3 and Fig. 6). Although in the discharge zone above the
polar cap the force-free approximation is not valid, and the argu-
ments of Section 4.3 cannot be directly applied to the current sheet
at the polar cap boundaries, electrons must be there for the following
reason. The current sheet is a region where the force-free approx-
imation is broken, at least in some places (for example in the null
point, where the surface charge density is discontinuous). As the
return current flows in the current sheet, the parallel electric field
will be directed from the NS, accelerating electrons in the current
sheet toward the NS surface. Hence there are also electrons in the
current sheet at the polar cap boundary, and this boundary will be
approximately equipotential. Consequently, the GJ charge density
in the polar cap should be close to the canonical value (67), and in
order to support a force-free configuration of the magnetosphere a
current adjustment mechanism is necessary.

For a current adjustment, high particle density in the magneto-
sphere is required. Indeed, only a small fraction of all particles could
be turned back to the NS. There must be enough inflowing particles
to adjust the current density in the polar cap, i.e. its number density
should be of the order of ρGJ/e. Hence, the particle number density
in the magnetosphere must be � ρGJ/e. However, almost all the par-
ticles in the magnetosphere are produced in the polar cap and outer
gap cascades, and a rather complicated coupling between cascade
regions and pulsar magnetosphere arises. The weaker the cascades,
the fewer particles are produced there, so the smaller deviation from
the GJ current density could be supported. Hence, when a pulsar be-
comes older, the number of particles created in the polar cap and
outer gap cascades is smaller and the maximum deviation of the cur-
rent density from j GJ will be smaller. If the magnetosphere remains
force-free, its configuration must be changed in order to adjust to
the new allowed current density. However, this new configuration
would result in different energy losses of the pulsar, i.e. the ratio of
the real losses to the losses given by the magnetodipolar formula
will be different from the same ratio in a previous configuration. So,
generally speaking, the evolution of pulsar angular velocity deriva-
tive will not follow the power law �̇ ∝ −�3, as is predicted by the
magnetodipolar formula.

In the case of non-stationary cascades there is evidence that no
particle inflow into the cascade region may be necessary in order
to support current densities both larger and smaller than j GJ (see
Levinson et al. 2005). However, for the creation of the ‘wave-like’
pattern of accelerating electric field (Levinson et al. 2005), necessary
for the support of small current densities together with a reasonable
pair creation rate, high pair density is required. With the ageing of
the pulsar the maximum achieved electric field and pair density will
decrease and shorten the range of allowed current densities. This
would lead to the evolution of the magnetosphere similar to the case
with stationary cascades.

The arguments presented here are based on qualitative analysis of
the polar cap cascade properties. In order to make quantitative pre-
dictions, a more detailed investigation of polar cap cascades is nec-
essary regarding stationarity, ranges of current densities supported
without particle inflow from the magnetosphere, and stability of the
cascades in the presence of particle inflow from the magnetosphere.

5.2 Configurations with a Y null point

Let us analyse the behaviour of the magnetosphere of an aligned
pulsar under the assumption that the null point is always of a Y
type. Here again we mean this in a time-average sense, i.e. we ne-
glect possible non-stationary processes (see e.g. Komissarov 2006;
Contopoulos 2005) in the current sheet operating on small scales

(
RLC), such as the building of small plasmoids. If non-stationary
variations of the current sheet remains small, the stationary solution
should adequately describe the properties of the magnetosphere. The
total energy of the magnetosphere decreases with increasing x0 (see
Fig. 10). Apparently the system will try to achieve the configuration
with the minimum possible energy, when x 0 = 1. However, when
the restrictions set by the polar cap cascades are taken into account
the picture becomes more complicated.

In solutions with a Y null point the current density in the mag-
netosphere close to the polar cap boundaries is always less than
the GJ current density; it does not exceed the Michel current den-
sity (see Section 4.1, Fig. 5). The current adjustment mechanism
could adjust the current density to values of less than j GJ for the
stationary cascade model with no particle escape from the NS sur-
face, in the Ruderman & Sutherland (1975) model. If the pulsar
operates in SCLF regime the current density cannot be essentially
less than j GJ. Hence, force-free solutions with a Y null point are
possible if the stationary polar cap cascade operates in a Ruderman–
Sutherland regime, or if the cascade is significantly non-stationary;
the latter case, however, demands more detailed investigations. On
the other hand, for the solutions with x 0 � 0.6, the current density
j pc close to the polar cap boundary has a different sign than j GJ and
such force-free configurations are probably never realized.

As was mentioned in Section 5.1, the inflowing particles could
be produced either in the pulsar wind or in the outer gap cascades.
The outer gap cascade could operate at the surface where GJ charge
density changes sign (Cheng et al. 1976). Only a relatively small
amount of open field lines cross this surface. Hence, particles pro-
duced in the outer gap cascades could not adjust the current density
along all magnetic field lines. In Fig. 12 we plot the current den-
sity in the polar cap of the pulsar for several x0 and indicate by the
dashed line the colatitudes where particle inflow from the outer gap
cascade would be possible. The critical colatitude, where particle
inflow from the outer gap cascade is still possible, corresponds to
the field line with the smallest ψ passing the surface of ρGJ = 0
inside the LC. At other colatitudes, reversed particles from the pul-
sar wind (from inside the LC!) are necessary in order to adjust the
current density.

In Fig. 5 one can see that the deviation of the current density from
j GJ, although remaining large, becomes smaller with decreasing x0.
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Figure 12. Current density distribution in the polar cap of pulsar j pc as a
function of the colatitude. Normalization of physical quantities is the same as
in Fig. 5. The colatitude ranges where the current density deviation from j GJ

could be supported by particles produced in outer gap cascades are indicated
by dashed lines. The current density at colatitudes where j pc is shown by
solid line should be supported by particles reversed inside the LC.
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Thus, if the magnetosphere remains force-free, with the ageing of
the pulsar the configuration should change to the one with a smaller
current density deviation from j GJ. Hence, if the force-free magne-
tosphere preserves its topology, with the slow-down of the neutron
star the size of the closed field line zone becomes smaller. The im-
mediate consequence of this is an increase of the electromagnetic
energy losses to the corresponding ‘magnetodipolar’ energy losses
according to equation (62) (see Fig. 8). Let us approximate the de-
pendence of x0 on the angular velocity of NS rotation by the power
law

x0 ∝ �ξ , (68)

where ξ is in reality a (complicated) function of pulsar age. ξ > 0
because x0 decreases as the pulsar gets older. Substituting this into
the formula for pulsar energy losses (62) we get

W ∝ �α, α = 4 − 2.065 ξ , (69)

and for a pulsar braking index

n = �̈�

�̇2
= α − 1 = 3 − 2.065 ξ , (70)

i.e. the breaking index is always less than 3!
Let us speculate that configurations with a Y null point are en-

ergetically preferable over all possible solutions (force-free and
non-force-free ones) and the polar cap cascade operates in the
Ruderman–Sutherland regime. Then, as long as particles produced
in the cascade regions will be able to support necessary current
densities, the pulsar magnetosphere should evolve with time as de-
scribed above, and at each moment of time the configuration should
be stable. Indeed, due to the reconnection of open field lines in the
equatorial current sheet the magnetosphere tries to achieve the en-
ergetically most preferably configuration, with x 0 = 1, but weaker
cascades could not inject enough particles into the magnetosphere
and support a larger deviation of the current density from j GJ.
Therefore, x0 at each moment of time corresponds to the config-
uration with the current distribution having the maximum possible
deviation from j GJ. The polar cap cascade zone is the part of the
whole system which does not allow the closed field zone to have
the maximum possible size. The conclusions of Spitkovsky (2005),
Komissarov (2006) and McKinney (2006), about instability of all
configurations with x 0 < 1, is the result of an assumption about the
possibility of an arbitrary current density distribution in the pulsar
magnetosphere.

We should note also another peculiarity in the Y-configuration–
the jump in the surface charge density along the separatrix in the
null point, where the charge density changes sign (see Section 4.3
and Fig. 6). The return current flows along the separatrix: electrons
to the NS, ions/positrons from the NS. The surface charge density in
the current sheet has different sign before and after the null point. We
note that there is a jump in the charge density, not just a continuous
changing of the charge density such as takes place across the surface
where ρGJ = 0. What happens in the null point that such a jump in
the charge density could be supported when there is a continuous
particle flow carrying the return current? Does an electron–positron
cascade operates here? Both the magnetic field and soft X-ray radia-
tion of the NS are too weak here and electron–positron pair creation
is suppressed. This problem requires additional investigation.

5.3 Alternatives to force-free Y configurations

In the force-free magnetosphere with a Y-like null point the deviation
of the current density from j GJ is always large >| j GJ − j Michel|,

especially close to the polar cap boundaries. For an older pulsar with
weak cascades it would be problematic to adjust the current flowing
through the polar cap to the required value. On the other hand,
even if force-free Y-configurations are energetically more preferable
over the whole class of possible solutions, the stationary polar cap
cascade operating in SCLF regime does not allow the current density
necessary to support a Y-configuration even in young pulsars. In
those cases, the magnetosphere could become non-force-free.

The possible alternative to a magnetosphere becoming non-force-
free at a distance of the order of RLC from the NS would be a force-
free magnetosphere with an X-like null point. The current density
deviation from the GJ current density in the magnetosphere with an
X-like null point would be less than that in the Y-configuration for
the following reason. In the X-configuration with x 0 < 1, condition
(39) must be satisfied in points at the LC above A and below A′

(see Fig. 13). In those points ∂xψ > 0, consequently SS′(ψ � ψ last)
> 0 and j(ψ � ψ last) < 0 everywhere, neither changing sign nor
approaching zero. In principle, for x0 not to close to the LC and
points A, A′ not too close to the equatorial plane, the deviation of the
current density from j GJ could be made rather small, allowing even
weak cascades to support the current density, because in this case
only a small correction to the current density would be necessary.
It is not clear yet if force-free X-configurations exist or what they
would look like (this work is in progress), however there is no clear
physical reason forbidding such a possibility.

For an X-configuration, the jump in the surface charge density of
the current sheet in the null point could be avoided or at least re-
duced in magnitude. Considerations from Section 4.3 can be applied
to the current sheet separating regions [2(2′)] and [3] in Fig. 13. If
the directions of the poloidal magnetic field in these regions coin-
cide,7 the charge density in this current sheet could be negative too.
Indeed, the electric field in regions [2] (E2) and [3] (E3) close to the
separatrix in that case has the same direction. If E 3 >E 2, the charge
density of the current sheet is negative and for such configuration
the charge density at the separatrix does not change sign, but even
if E 2 >E 3 the positive charge density would be less than in the
case of an equatorial current sheet, when the electric field has to
change sign. If the directions of the poloidal magnetic field in these
regions are different, the same problem with the current sheet as in
the Y-configuration arises for any values of the electric field inside
region [3].

The X-configuration was criticized (Lyubarskii 1990) because in
the force-free case there is no source of external magnetic field,
which could fill region [3] in Fig. 13. However, once formed, this
region may be supported by the global current system in the magne-
tosphere. Reconnection in the equatorial current sheet (Komissarov
2006; Contopoulos 2005) could lead to instantaneous formation
of magnetic loops, which would grow in size and form some
kind of X-configuration. These loops would try to merge with
the closed field line zone or fly away, but the current distribution
in the force-free magnetosphere will not support such configura-
tions, so the resulting X-configuration could be stable. What force-
free solutions with an X null point would look like is not clear
at the moment; maybe there could be solutions with many X null
points, i.e. when there are several islands of closed field lines along
the equatorial plane (see Fig. 13b), but such complicated systems
may be unstable. On the other hand, the configuration shown in

7 The current sheet in such a configuration is necessary, because in the force-
free magnetosphere charged particles cannot flow across magnetic field lines,
so after the null point they should flow along a very thin layer too.
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Figure 13. Configurations of magnetic field in the magnetosphere of an aligned rotator with X-null point. (a) – After the null point x0 the separatrix goes
away from the equatorial plane but then intersects it. There are three regions with open magnetic field lines: [2], [2′] and [3]. (b) – After the null point x0 the
separatrix goes away from the equatorial plane but than intersects it (several) times in points x 1, . . .. There are several regions with closed magnetic field lines:
[1], [3] and [3′].

Fig. 13(a)8 cannot be entirely force-free. Indeed, there is no poloidal
current in region [3], as it has to have the same direction in both
hemispheres, hence the magnetic field there is purely poloidal. This
implies that the plasma here does not rotate and there are no currents
in the force-free case that could generate the magnetic field. How-
ever, we could speculate that in region [3] at some (large) distance
from the null point, where the force-free approximation is broken,
a system of currents is built up, which also generate the magnetic
field in the force-free domain of region [3], close to the null point.
In this case the magnetosphere may be force-free at several sizes of
the LC.

Time-dependent simulations of an aligned rotator magnetosphere
probably could clarify the kind of configuration that is realized.
The simulations of Spitkovsky (2005), Komissarov (2006) and
McKinney (2006) do not incorporate restrictions on the electric
current in the magnetosphere due to polar cap cascade. In time-
dependent codes, the restriction set by the polar cap cascades should
be formulated in the form of boundary conditions on the poloidal
current density. This could be achieved, for example, by the intro-
duction of an artificial Ohm’s law along open field lines in the ‘polar
cap’ of the pulsar, i.e. in regions close to the NS surface, such as

j = max(σ|| E, j cas) , (71)

where j cas corresponds to the minimal possible current density along
the particular field line allowed by cascades. σ || is the conductiv-
ity along the magnetic field lines, specific to each particular code.
In order to set these restrictions, the knowledge of the polar cap
cascade properties is necessary, which is another very complicated
problem.

The possibility of a non-stationary magnetosphere also cannot be
excluded at the current stage of research. In order to decide between
possible configurations (e.g. force-free with X or Y null points, non-
force-free stationary magnetosphere or significantly non-stationary
configurations) more detailed studies of polar cap cascades and the
stability of the current sheet are necessary .

8 Such a configuration has been considered in several works (e.g. Beskin
et al. 1993; Beskin & Malyshkin 1998).

6 C O N C L U S I O N S

We have studied in detail stationary configurations of the force-free
magnetosphere of an aligned rotator with a Y null point. This as-
sumption about the Y-configuration of the magnetosphere is very
popular and this case had demanded careful investigation. We find a
set of force-free solutions parametrized by the position of the neutral
point x0. Results presented in this work for x 0 = 1 agree very well
with ones obtained by other authors (Contopoulos 2005; Gruzinov
2005; Komissarov 2006; Spitkovsky 2005). We calculated the phys-
ical characteristic of obtained solutions and analysed properties of
force-free magnetosphere with a Y-like null point. For solutions with
x0 close to 1 we found that, despite similarly distributed magnetic
surfaces at large distances from the LC, they differ substantially
from the split monopole solution of Michel (1973b) regarding the
distribution of physical quantities (drift velocity, energy flux distri-
bution, etc.). When the null point lies well inside the LC, solutions
approach the Michel one, the agreement being better for smaller
values of x0.

We analysed the role that cascades in the polar cap play in the
formation of the overall structure of the magnetosphere. Although
its properties depend mostly on the local physics in the polar cap
of pulsar, this cascade region sets serious limitations on the current
density in the whole magnetosphere. In some sense the non-trivial
physics of the cascades plays the role of complicated boundary
conditions for MHD equations that describe the structure of the
magnetosphere – arbitrary current density is not allowed. Changes
in boundary conditions influence the whole solution. We argue that
not all possible Y-configurations can be realized. Moreover, the re-
strictions set by some cascade models questions the existence of a
stationary force-free Y-configuration. In our opinion, there are two
problems with the force-free magnetosphere in the Y-configuration:
(i) the current density strongly deviates from the GJ current density,
and (ii) the charge density along the current sheet has discontinuity
and changes sign. These problems could be avoided in stationary
force-free X-configurations.

We argue that with the ageing of pulsar and decreasing of the
cascade power, the magnetosphere must evolve with time, i.e. it
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should change to the configurations where the deviation of the cur-
rent density from j GJ will be smaller. In the case of a force-free
Y-configuration the closed field line zone grows more slowly than
the LC during pulsar slowdown. This leads to a decreasing pulsar
breaking index below the value 3, predicted by the magnetodipolar
formula. This effect is present in the aligned rotator because of the
current adjustment in the polar cap of the pulsar. Similar behaviour
should also be present in configurations with an X-like null point.
In an analytical model of Beskin & Malyshkin (1998) it was shown
that the minimum energy of the magnetosphere is achieved when x0

approaches the LC. Although their model is an oversimplification
of the real problem, this result should be qualitatively true. An X-
configuration with x 0 = 1 requires strong deviations of j from j GJ, so
as the pulsar ages, x0 should decrease, increasing the number of open
field lines, leading to increased energy losses and a decreased pulsar
breaking index. This should also be true for an inclined rotator, at
least for not very large inclination angles. Recently, Contopoulos &
Spitkovsky (2006) proposed another explanation for the breaking
index of a pulsar being less than 3. In their model it is caused also
by a shrinking of the closed field line zone, but they assumed this
is due to differences in the characteristic time, at which the magne-
tosphere reaches the new configuration due to the reconnection of
new magnetic field lines, and the time of increase of the LC radius.
However, the reason of such a slow reconnection in the current sheet
is not clear.

The solutions obtained could be used for comparison with ob-
servations. For example, magnetic field lines are differently twisted
in different solutions; this could be compared with magnetic field
geometry inferred from pulsar polarization measurements (see
Dyks & Harding 2004, and references therein). However, the real
pulsar magnetosphere could be non-stationary and/or non-force-
free, and this issue could be verified only within a more detailed
time-dependent approach. On the other hand, in the latter case ob-
servational manifestations of the pulsar will be significantly dif-
ferent from models with a force-free magnetosphere, where the
main emission comes from the polar cap and from the outer gap
zones.
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A P P E N D I X A : C U R R E N T D E N S I T Y I N T H E

P O L A R C A P

The poloidal current density is given by (see Beskin 2005)

jpol = ∇ I × eφ

�
= dI

d�
Bpol , (A1)

the latter expression was obtained by taking into account relation
(10). Substituting for Bpol, the expression for the dipole magnetic
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field at the NS surface Bpol = B 0(er cos θ + (1/2) eθ sin θ ), and
expressing I and � through normalized quantities, we get for the
poloidal current density in the polar cap of pulsar

jpc = | jGJ| 1

2
S′(ψ)

√
1 − 3

4
sin2 θ , (A2)

where | j GJ| is the absolute value of the GJ current density in the
polar cap

| jGJ| = B0�

2πc
c . (A3)

For a dipole magnetic field in the polar cap (see equation 44)

ψ = RLC

RNS
sin2 θ ≈ RLC

RNS
θ 2 . (A4)

The colatitude of the polar cap boundary is θpc = 1.45 ×
10−2 P−1/2√ψlast; P is the period of pulsar in seconds. Thus, θ 2 <

θ pc
2 
 1 and the term with sin2θ in equation (A2) can be neglected.

From equation (A4) we have the relation between the colatitude θ

in the polar cap and the corresponding magnetic flux function ψ

ψ = ψlast

(
θ

θpc

)2

. (A5)

Substituting this relation into equation (A2) we get

jpc = | jGJ| 1

2
S′

[(
θ

θpc

)2

ψlast

]
. (A6)

A P P E N D I X B : E N E R G Y L O S S E S

The poloidal component of the Poynting flux in the magnetosphere
of an aligned rotator is

Ppol = c
4π

[E × B]pol = −�F

c
I Bpol , (B1)

the latter expression was obtained with help of equations (8) and
(14). Expressing Bpol through �, equation (9), we have for the
radial component of the Poynting flux

Pr = − I�F

c
1

�r
(Z ∂� � − � ∂Z�) , (B2)

where r = √
� 2 + Z 2. Energy losses per solid angle dω are dW =

−r 2 P r dω. The angular distribution of energy losses are given by

dW
dω

= I�F

c
r
�

(Z ∂� � − � ∂Z�) . (B3)

Using normalized quantities we rewrite this equation as

dW
dω

= |Wmd|
4π

S

√
x2 + z2

x
(z ∂xψ − x ∂zψ) , (B4)

where |W md| is the absolute value of the magnetodipolar energy
losses, here defined as

|Wmd| ≡ μ2

R4
LC

c = B2
0 R6

NS�
4

4c3
. (B5)

Energy losses of an aligned rotator can be obtained by the inte-
gration of equation (B3):

W =
∫

4π

dW
dω

dω = 2

∫ �last

0

2π

c
I�F d� ; (B6)

the factor of 2 appears because energy is carried away by the Poynt-
ing flux from both hemispheres. Using the normalized quantities

introduced at the end of the Section 2.1, this formula can be rewrit-
ten as

W = μ2

R4
LC

c

∫ ψlast

0

S dψ = |Wmd|
∫ ψlast

0

S dψ . (B7)

An analytical formula for estimation of aligned rotator energy
losses could be obtained in the following way. Poloidal current S
for each of obtained solutions does not deviate much from Michel’s
current function, equation (50). Substituting this function into equa-
tion (B7), we get

W ≈ −2

3
ψ2

last |Wmd| . (B8)

We could estimate the dependence of ψ last on x0 using the mag-
netic flux function of the dipolar field; equation (19). Substituting
ψdip (x 0) = x−1

0 into equation (B8), we get

W ≈ −2

3
x−2

0 |Wmd| . (B9)

A P P E N D I X C : T H E S I Z E O F T H E R E G I O N

W H E R E PA RT I C L E I N F L OW I S P O S S I B L E

Charged particles in crossed electric and magnetic fields drift with
the velocity U D given by equation (16), which can be rewritten
as

U D = �F�

B2

(
Bpol

2eφ − Bφ Bpol

)
. (C1)

In general, a charged particle in the magnetosphere could have two
velocity components: one perpendicular to the magnetic field line
(the drift velocity) and an additional component along the magnetic
field line, U || (see Fig. C1). With increasing distance from the NS,
UD increases (see Fig. 3). The velocity of the particle U can not
exceed the speed of light, hence the parallel component of particle
velocity far from the NS must be also smaller. The magnetic field
lines far from the NS are strongly twisted and at some distance
the particle radial velocity component will be positive, i.e. directed
from the NS, for any direction of the parallel component. At these
distances, particles can flow only from the NS. Let us show that the

�U

Ur

�UD

UD r

U||

U|| r α

Br

�B

r

Figure C1. Particle velocity decomposition in U || and UD. The mgnetic
field line is shown by the thick curved line.

C© 2006 The Author. Journal compilation C© 2006 RAS, MNRAS 368, 1055–1072



1072 A. N. Timokhin

size of the domain where particles could flow to the NS corresponds
to the size of the LC.

From Fig. C1 it is evident that the radial component of the total
particle velocity is

Ur = UD r + U|| r . (C2)

The maximum value of the velocity component parallel to the mag-
netic field is

U max
|| �

√
c2 − U 2

D . (C3)

If the radial component of the magnetic field Br > 0, then for the
azimuthal component of the magnetic field Bφ = −|Bφ |. For radial
components of particle velocities we have

U max
|| r = − Br

B
U max

|| � − Br

B
c

√
1 −

(
�F�

c

)2
Bpol

2

B2
, (C4)

UD r = �F�

B2
|Bφ |Br . (C5)

From this, the maximum possible velocity component in the radial
direction is

U max
r � − Br

B
c

⎛⎝√
1 −

[
�F�

c

]2
Bpol

2

B2
− �F�

c
|Bφ |

B

⎞⎠ (C6)

Particles could flow to the NS only if U max
r < 0, and this is possible

if√
1 −

(
�F�

c

)
Bpol

2

B2
>

�F�

c
|Bφ |

B
(C7)

or

� <
c

�F
, (C8)

i.e. only inside the LC. For Br < 0 we get the same result. The same
restriction, namely that particles could cross the Alfvénic surface
(LC in our case) only in one direction, is proved to be valid in the
full MHD case too (see e.g. Beskin 2005).
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