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ABSTRACT

In this paper we consider the stationary force-free magnetosphere of an aligned rotator when
the plasma in the open field-line region rotates differentially as a result of the presence of a
zone with an accelerating electric field in the polar cap of the pulsar. We study the impact
of differential rotation on the current density distribution in the magnetosphere. Using the
split-monopole approximation we obtain analytical expressions for the physical parameters
of the differentially rotating magnetosphere. We find the range of admitted current density
distributions under the requirement that the potential drop in the polar cap is less than the
vacuum potential drop. We show that the current density distribution could deviate significantly
from the ‘classical’ Michel distribution and could be made almost constant over the polar cap,
even when the potential drop in the accelerating zone is of the order of 10 per cent of the
vacuum potential drop. We argue that the differential rotation of the open magnetic field lines
could play an important role in adjusting the current density between the magnetosphere and

the polar-cap cascade zone and could affect the value of the pulsar braking index.
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1 INTRODUCTION

The physics of radiopulsars is still not fully understood, despite the
substantial efforts of many theoreticians in the field. It is generally
assumed that a radiopulsar has an MHD-like magnetosphere that is
very close to being force-free, except in some geometrically small
regions — the model first introduced by Goldreich & Julian (1969).
For many years the solution of force-free MHD equations was a
problem, even for the simplest case of an aligned pulsar. Now, how-
ever, it is possible to solve the Grad—Shafranov equation describ-
ing the structure of a force-free magnetosphere of an aligned pulsar
(see e.g. Contopoulos, Kazanas & Fendt 1999; Goodwin et al. 2004;
Gruzinov 2005; Timokhin 2006). Stationary magnetosphere config-
urations for an aligned rotator were also obtained as the final stage
in non-stationary numerical modelling (Komissarov 2006; McKin-
ney 2006; Bucciantini et al. 2006; Spitkovsky 2006). Even the case
of an inclined rotator has been studied numerically (Spitkovsky
2006). The pulsar magnetosphere is a very complicated physical
system, however, because most of the current carriers (electrons
and positrons) are produced inside the system, in the polar-cap cas-
cades. The production of electron—positron pairs is a process with
a threshold, so it can operate only under specific conditions, and,
generally speaking, not every current density can flow through the
cascade zone.
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In magnetohydrodynamics (MHD), the current density distribu-
tion is not a free ‘parameter’; it is obtained in the course of solving
the MHD equations. In the case of pulsars, however, obtaining a so-
lution for the MHD equations does not solve the problem, because it
is possible that the polar-cap cascade zone will not be able to provide
the required current density distribution, and, hence, will be unable
to support the configuration of the magnetosphere corresponding to
the solution of the MHD equations. In terms of MHD, the polar-cap
cascade zone sets complicated boundary conditions at the foot points
of the open magnetic field lines, and any self-consistent solution of
the problem must match them. The most ‘natural’ configuration of
the magnetosphere of an aligned rotator, in which the last closed
field line extends up to the light cylinder, requires a current density
distribution that could not be supported by stationary electromag-
netic cascades in the polar cap of the pulsar (see Timokhin 2006,
hereafter Paper I). This configuration requires that in some parts of
the polar cap the electric current flows against the preferred direc-
tion of the accelerating electric field. This configuration also seems
to be impossible for non-stationary cascades, although this problem
requires further careful investigation (Fawley 1978; Al’Ber, Kro-
tova & Eidman 1975; Levinson et al. 2005). The structure of the
magnetosphere should thus be different from this simple picture.
The magnetosphere of a pulsar should have a configuration with
a current density distribution that can flow through the polar-cap
cascade zone without the suppression of electron—positron pair cre-
ation. Whether such a configuration exists is an open question; in



606 A.N. Timokhin

other words, the possibility that the real pulsar magnetosphere has
large domains where the MHD approximation is broken cannot be
completely excluded (see e.g. Arons 1979; Michel 1991).

As the pulsar magnetosphere and the polar-cap cascade zone have
very different characteristic time-scales, it is virtually impossible to
model the whole system at once. These physical systems should
therefore be modelled separately, and the whole set of solutions for
each system should be found in order to find compatible ones. We
thus suggest the following approach to the construction of the pulsar
magnetosphere model: determine which currents could flow through
the force-free pulsar magnetosphere, and then compare them with
the currents able to flow through the polar-cap cascade zone. In this
work we deal with the first part of this suggested ‘program’: we
consider the range of possible current density distributions in the
force-free magnetosphere of an aligned rotator.

The force-free magnetosphere of an aligned rotator is the simplest
possible case of an MHD-like pulsar magnetosphere and needs to
be the first to be investigated. This system has two physical de-
grees of freedom: (i) the size of the closed field line zone, and (ii)
the distribution of the angular velocity of the open magnetic field
lines. In each stationary configuration the current density distribu-
tion is fixed. Considering different configurations by changing (i)
and (ii) and keeping them in a reasonable range, the whole set of
admitted current density distributions can be found. The differen-
tial rotation of the open field lines is caused by variation of the
accelerating electric potential in the cascade zone across the po-
lar cap. Theories of stationary polar-cap cascades predict a small
potential drop, and in this case only one degree of freedom is left
— the size of the zone with closed magnetic field lines. This case
was studied in detail in Paper I, with the finding that stationary
polar-cap cascades are incompatible with a stationary force-free
magnetosphere. The polar-cap cascades therefore probably operate
in the non-stationary regime. For non-stationary cascades the aver-
age potential drop in the accelerating zone could be larger than the
drop maintained by stationary cascades. Hence, the open magnetic
field lines may rotate with significantly different angular veloci-
ties even in the magnetospheres of young pulsars. On the other
hand, for old pulsars the potential drop in the cascade zone is large,
and the magnetospheres of such pulsars should rotate essentially
differentially.

The case of a differentially rotating pulsar magnetosphere has
not been investigated in detail before, although some authors have
addressed the case in which the open magnetic field lines rotate with
a constant angular velocity different from that of the neutron star
(NS), see e.g. Beskin, Gurevich & Istomin (1993) and Contopoulos
(2005). The first attempt to construct a self-consistent model of a
pulsar magnetosphere with a differentially rotating open field line
zone was made in Timokhin 2007, hereafter Paper II. In that paper
we considered only the case for which the angular velocity of the
open field lines is lower than the angular velocity of the NS. We
have shown that the current density can be made almost constant
over the polar cap, although at a cost of a large potential drop in the
accelerating zone. The angular velocity distributions was chosen on
an ad hoc basis, and an analysis of the admitted range for current
density distributions was not performed.

In this paper we discuss the properties of the differentially rotat-
ing magnetosphere of an aligned rotator in general, and elaborate
the limits on the differential rotation. We study in detail the case in
which the current density in the polar cap is a linear function of the
magnetic flux. It allows us to obtain the main relationships analyt-
ically. We find the range within which the physical parameters of
the magnetosphere could vary, requiring that (i) the potential drop

in the polar cap is not greater than the vacuum potential drop, and
(ii) the current in the polar cap does not change its direction.

The plan of the paper is as follows. In Section 2 we discuss the
basic properties of the differentially rotating force-free magneto-
sphere of an aligned rotator and derive equations for the angular
velocity distribution, the current density, and the Goldreich—Julian
charge density in the magnetosphere. In Section 3 we derive equa-
tions for the potential drop that supports configurations with a linear
current density distribution in the polar cap of the pulsar and give
their general solutions. In Section 4 we analyse the physical proper-
ties of admitted magnetosphere configurations: the current density
distribution, the maximum potential drop, the angular velocity of
the open magnetic field lines, the Goldreich—Julian current density,
the spindown rate and the total energy of the magnetosphere. At the
end of that section we consider as examples two sets of solutions,
one with constant current densities and the other with the smallest
potential drops. In Section 5 we summarize the results, discuss the
limitations of the used approximation, and briefly describe possi-
ble modifications of the obtained solutions that will arise in truly
self-consistent models. In that section we also discuss how the dif-
ferential rotation affects the value of the pulsar braking index.

2 DIFFERENTIALLY ROTATING
MAGNETOSPHERE: BASIC PROPERTIES

2.1 Pulsar equation

Here, as in Papers I and II, we consider the magnetosphere of an
aligned rotator that is at the coordinate origin and has a dipolar mag-
netic field. We use normalizations similar! to the ones in Paper I,
but now we write all equations in the spherical coordinates (r, 6,
¢). We normalize all distances to the light-cylinder radius of the
corotating magnetosphere R;c = ¢/$2, where Q is the angular ve-
locity of the NS, and c is the speed of light. For the axisymmetric
case considered, the magnetic field can be expressed through the
two dimensionless scalar functions W and S as (cf. equation 8 in
Paper I)

n VW x ey + Sey

B=— -
R 7 sinf

M
where e, is the unit azimuthal, toroidal vector; p = BOR?\IS /2 is the
magnetic moment of the NS; By, is the magnetic field strength at the
magnetic pole; and Rys is the radius of the NS. The scalar function
W is related to the magnetic flux as ®p,e(ww, Z) = 271(u/Ric) ¥
(r, 6). ®myg is the magnetic flux through a circle of radius @ =
r sin € with its centre at the point on the rotation axis at a distance
Z = r cosf from the NS. The lines of constant W coincide with
the magnetic field lines. The scalar function S is related to the to-
tal current J outflowing through the same circle by the equation
J(@,Z)=1/2(n/R3 ) cS(r, 0).
The electric field in the force-free magnetosphere is given by

E=——8VVY, ()

where f is the ratio of the angular velocity of the rotation of the
magnetic field lines, QF, to the angular velocity of the NS: § = Qg/Q
(cf. equation 14 in Paper I). The difference between the angular
velocity of a magnetic field line and the angular velocity of the NS
is caused by a potential drop along the field line in the polar-cap
acceleration zone.

'Note that here, in contrast to in Paper I, W is already dimensionless.
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For these dimensionless functions the equation describing the
stationary force-free magnetosphere, the so-called pulsar equa-
tion (Michel 1973a; Scharlemann & Wagoner 1973; Okamoto
1974), takes the form (cf. equation 20 in Paper I)

2 6 0, W
[1 — (Brsinf)]AW — = (ar\y+ kb )
r sinf r
ds dg . 2
— R (r = 0. 3
—I—qu] ﬁd\I/ (rsinf V¥)* =0 3

This equation express the force balance across the magnetic field
lines. At the light cylinder 1 — (87 sind)? goes to zero and the pulsar
equation reduces to

ds 1dp 2 .

iU = pav (VW¥)* +28sin6 (0,¥ + Bcos6 0yV). )
Each smooth solution must satisfy these two equations, and the
problem of solving the pulsar equations transforms to an eigenfunc-
tion problem for the poloidal current function S (see, for example,
section 2.3 in Paper I). Equation (4) could also be considered as an
equation for the poloidal current.

We adopt for the magnetosphere the configuration with the so-
called Y-null point. That is, we assume that the magnetosphere is
divided into two zones, the first one with closed magnetic field
lines, which extend from the NS up to the neutral point, located
at a distance xy from the NS, and the second one with magnetic
field lines that are open and extend to infinity (see Fig. 1). In the
closed magnetic field line zone, plasma corotates with the NS, there
is no poloidal current along field lines, and the magnetic field lines
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Figure 1. Structure of the magnetosphere of an aligned rotator (schematic
picture). Magnetic field lines are shown by solid lines. The outflowing cur-
rent J along open magnetic field lines and the returning current Jieym in
the current sheet, separating zones of open and closed magnetic field lines,
are indicated by arrows. The current sheet is along the last open magnetic
field line, corresponding to the value of the flux function Wp,.. Distances are
measured in units of the light-cylinder radius for the corotating magneto-
sphere Ry ¢, i.e. the point at x = 1 marks the position of the light cylinder in
the corotating magnetosphere. The null point xp could lie anywhere inside
the interval [0, 1]. Possible positions of the real light cylinder are shown
by dotted lines. Line I corresponds to the case with 1/8(W ) < xo; line I,
toxp < 1/B(Wpe) < 1; and line 11, to 1 < 1/B8(Wpc) (see text for further
details).
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there are equipotential. Obviously this zone cannot extend beyond
the light cylinder. In the rest of the magnetosphere, magnetic field
lines are open owing to the poloidal current produced by outflowing
charged particles. The return current, needed to keep the NS charge
neutral, flows in a thin region (current sheet) along the equatorial
plane and then along the last open magnetic field line. We assume
that this picture is stationary on the time-scale of the order of the
period of rotation of the NS. As was outlined in Paper I, the polar-cap
cascades in pulsars are probably non-stationary. The characteristic
time-scale of the polar-cap cascades, ~ h/c ~ 3 x 107 s (where
h is the length of the acceleration zone, being of the order of Rys),
is much shorter that the pulsar period (which for most pulsars is
31073 5). So, for the global magnetosphere structure only the time
averages of the physical parameters connected to the cascade zone
are important. In the rest of the paper, when we discuss physical
parameters set by the cascade zone we will always mean the average
values of them, unless explicitly stated otherwise.

The differential rotation of the open magnetic field lines that is
caused by the presence of a zone with an accelerating electric field
in the polar cap of a pulsar (i) contributes to the force balance across
the magnetic field lines (the last term in equation 3), (ii) modifies
the current density in the magnetosphere (the first term on the right-
hand side of equation 4), and (iii) changes the position of the light
cylinder, where condition (4) must be satisfied. Note that for (i) and
(ii) the derivative dg/dW, i.e. the form of the distribution (W),
plays an important role. Therefore for different angular velocity
distributions in the open magnetic field line zone there should exist
different magnetosphere configurations that have in general distinct
current density distributions. Let us now consider restrictions on the
differential rotation rate S(\W).

2.2 Angular velocity of the open magnetic field lines

As a result of the rotation of the NS a large potential difference
arises between the magnetic field-line foot points on the surface of
the NS. The potential difference between the pole and the magnetic
field line corresponding to the value of the magnetic flux function
W is
"
AV(Y) = —W. )]
Ric
In a perfectly force-free magnetosphere the magnetic field lines are
equipotential. Owing to the presence of the polar-cap acceleration
zone, where MHD conditions are not satisfied, however, part of this
potential difference appears as a potential drop between the surface
of the NS and the pair-formation front, above which the magnetic
field line remains equipotential. This potential drop is the reason
why the open magnetic field lines rotate differently from the NS. The
normalized angular velocity of a magnetic field line § is expressed
through the potential drop along the field line as (e.g. Beskin 2005,
Paper I)
ROV (¥)

B=1+ v
V is the total potential drop (in statvolts) along the magnetic field
line in the polar-cap acceleration zone (cf. equation 23 in Paper I).

The polar cap of a pulsar is limited by the magnetic field line
corresponding to a value of the flux function W.. The potential
drop between the rotation axis and the boundary of the polar cap is

©)

"
AV(We) = 2 Upe = AV, )
LC

This is the maximum available potential drop along an open mag-
netic field line. It could be achieved in a vacuum, when there is no
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plasma in the polar cap. We will call AV, the vacuum potential
drop. Let us normalize the poloidal flux function W to its value at
the last open magnetic field line W, and introduce a new function
¥ = W/W,.. Normalizing the potential drop along field lines to the
vacuum potential drop and introducing the dimensionless function
V = V/AV),., we rewrite the expression for the normalized angular
velocity of the open magnetic field line as
oV

B=1+ oy ®)
As the potential drop along any field line cannot be greater than the
vacuum drop and cannot have a different sign from the vacuum drop,
the variation of the electric potential across the polar cap cannot
exceed the vacuum potential drop. In terms of the dimensionless
functions this condition has the form

VW) -V@I <L Yy, ¥, €[0,1]. ©)

The inequality (9) sets the limit on the electric potential in the polar
cap of a pulsar.

2.3 Current density in the polar cap

In order to obtain the current density distribution in the polar cap of
a pulsar, the pulsar equation (3) together with the condition at the
light cylinder (4) must be solved. There is an analytical solution of
the pulsar equation only for a split-monopole configuration of the
poloidal magnetic field. That is, when the flux function ¥ has the
form

W = Wy (1 — cosh), (10)

W being a constant, equations (3) and (4) have a smooth solution
if the poloidal current function S has the form (e.g. Blandford &
Znajek 1977)

S(‘-I/):—ﬁ(\l’)\ll<2— %) (11)

M

Here W corresponds to the value of the magnetic flux through the
upper hemisphere, i.e. it corresponds to the magnetic field line lying
in the equatorial plane. The poloidal current given by equation (11)
is very similar to the current in the well-known Michel solution
(Michel 1973b), but this expression is valid for non-constant (W)
too.

In this paper we will use expression (11) for the poloidal current
function S. In doing so, we assume that in the neighbourhood of the
light cylinder the geometry of the poloidal magnetic field is close
to a split monopole. This is a good approximation if the size of
the closed magnetic field-line zone is much smaller than the light-
cylinder size, i.e. xo < 1/B(¥), ¥ < 1. For configurations in which
the edge of the corotating zone? approaches the light cylinder, the
poloidal current S is different from that given by equation (11), but
we expect that this deviation should not exceed 10-20 per cent.
Indeed, in the numerical simulations described in Paper I, where
the case of constant 8 = 1 was considered, the deviation of S from
Michel’s poloidal current did not exceed 20 per cent and it became
smaller for smaller sizes of the corotating zone (see fig. 3 in Paper I).
Similarly, in Paper II, in which we considered the case of variable
B < 1, the poloidal current deviated from the values given by the
analytical formula (11) by less than 20 per cent and the difference
became smaller for smaller sizes of the corotating zone. We may

2Plasma in the closed field-line zone corotates with the NS, so we will call
the region with the closed magnetic field lines the corotating zone.

therefore hope that the same relationship holds in the general case
too.

We intend to find the range of admitted current density distri-
butions in the force-free magnetosphere. Here we use the split-
monopole approximation for the poloidal current (11), and hence
we can study the effect of only the differential rotation on the current
density distribution. The dependence of the current density on the
size of the corotating zone in a differentially rotating magnetosphere
will be addressed in a subsequent paper, in which we will refine our
results by performing numerical simulations for different sizes of
the corotating zone.

Thus in our approximation the last closed field line in the dipole
geometry corresponds to the field line lying in the equatorial plane
in the monopole geometry, i.e. Wy = W,,.. In normalized variables,
the expression for the poloidal current has the form

S(W) = =V B Y (2 — ¥). (12)

The poloidal current density in the magnetosphere is (see e.g. Beskin

2005)

c VS xey QB,, 1dS
= —C — —

—_—— . 13
47t R} rsind 2me 24V (13)

Jpol =

In the polar cap of the pulsar the magnetic field is dipolar and, hence,
poloidal. The Goldreich—Julian charge density for the corotating
magnetosphere near the NS is
Q-B

27c

PGy = — (14)
Using expressions (12)—(14) we obtain for the current density in the
polar cap of the pulsar

1
j=5i& 2B =)+ By -] (15)

The prime denotes differentiation with respect to ¥, ie. g/ =
dB/dyr; and j& = p%; ¢ is the Goldreich-Julian current density
in the polar cap for the corotating magnetosphere. At the surface of
the NS, where the potential drop is zero and the plasma corotates
with the NS, j%; corresponds to the local GJ current density.

2.4 Goldreich—Julian charge density in the polar cap for a
differentially rotating magnetosphere

The Goldreich—Julian (GJ) charge density is the charge density that
supports the force-free electric field:

1
47t
The GJ charge density at points along a magnetic field line rotating
with an angular velocity different from the angular velocity of the NS
will be different from the values given by equation (14). Substituting

the expression for the force-free electric field (2) into equation (16)
we obtain

o =—V-E. (16)

nw
por = =i (BAY + B/(VI)?). an
4TR]
We see that the GJ charge density depends not only on the angular
velocity of the field-line rotation (the first term in equation 17), but
also on the angular velocity profile (the second term in equation 17).
Near the NS the magnetic field is essentially dipolar. The magnetic
flux function W for a dipolar magnetic field is
2
pdie — M (18)
r
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Substituting this expression into equation (17) we obtain

par = AntR} - 13
) ,sin? 6 )
X | B2(Bcos”0 — 1)+ B ——@Bcos“ 0 +1) | . (19)
r

In the polar cap of the pulsar cosd ~ 1 and u/(rR.c)® ~ B/2.
Recalling the expression for the magnetic flux function for a dipolar
magnetic field (18), we obtain for the local GJ charge density in the
polar cap of the pulsar the expression

pcr = pey (B + B'Y). (20)

3 ACCELERATING POTENTIAL

In our approximation, any current density distribution in the force-
free magnetosphere of an aligned rotator has the form given by
equation (15). The current density depends on the angular velocity of
the magnetic field lines (1), which for a given field line depends on
the total potential drop along that line according to equation (8). The
potential drop in the acceleration zone cannot exceed the vacuum
potential drop, i.e. V is limited by inequality (9).

Therefore, if we wish to find the accelerating potential that sup-
ports a force-free configuration of the magnetosphere for a given
form of the current density distribution® in the polar cap we do the
following. We equate the expression for the current density distribu-
tion to the general expression for the current density (15), and then
express B(v) in terms of V(i) by means of equation (8), thus obtain-
ing an equation for the electric potential V that supports a force-free
magnetosphere configuration with the desired current density dis-
tribution. If solutions of the obtained equation fulfil limitation (9),
such a configuration is admitted; if not, such a current density could
not flow in the force-free magnetosphere of an aligned pulsar. At
present there is no detailed model for non-stationary polar-cap cas-
cades from which we could deduce reasonable shapes for the current
density distribution. We therefore try to set constrains on the current
density by assuming the linear dependence of the current density on
.
In a differentially rotating magnetosphere there are two character-
istic current densities. The first one is the Goldreich—Julian current
density for the corotating magnetosphere, j2;. It corresponds to the
actual Goldreich—Julian current density in the magnetosphere at the
NS surface, where differential rotation has not yet been built up. The
second characteristic current density is the actual Goldreich—Julian
current density, jg;, at points above the acceleration zone, where the
magnetosphere is already force-free and the final form of the differ-
ential rotation is established; in the polar cap jg; is given by formula
(20). For a magnetosphere with a strong differential rotation, the
current densities j%J and jg; differ significantly. In this section we
consider both cases; that is, when the current density distribution is
normalized to j%; and when it is normalized to jg;.

3.1 Outflow with the current density being a constant fraction
of the actual Goldreich-Julian current density

For non-stationary cascades the physics is determined by the re-
sponse of the cascade zone to the inflowing particles and MHD
waves coming from the magnetosphere. However, the accelerating
electric field depends on the deviation of the charge density from

3Guessed from a model for the polar-cap cascades, for example.
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the local value of the GJ charge density. Thus the first naive guess
would be that the preferred state of the cascade zone would be the
state in which (on average) the current density is equal to the GJ
current density jgy:

W) = ja®) = j& B+ BY). 21

Equating this formula to the general expression for the current den-
sity (15) and substituting for 8 with expression (8), we obtain after
algebraical manipulation the equation for the accelerating electric
potential in the polar cap of the pulsar:
’
V”:—2]+V . (22)
14

We set the boundary conditions for V at the edge of the polar cap.
As the boundary conditions we can use the value of the normalized
angular velocity at the edge of the polar cap and the value of the
electric potential there:

1+ V,(l) = ,ch, (23)

V) =V, (24)

The solution of equation (22) satisfying the boundary conditions
(24), (23) is

V(W)=Vo+(1—1ﬁ)( —%) (25)
We see that, unless B, = 0, the potential has a singularity on the
rotation axis, and, hence, such a configuration cannot be realized in
the force-free magnetosphere of a pulsar. Condition (9) is violated
— the potential difference exceeds the vacuum potential drop.

If Bp. =0, the potential is V =V + 1 — ¢, and from equation (8)
we have B(¥) = 0. Substituting this into equation (15) we obtain
for the current density j() = 0. Thus the case with B, = 0 is
degenerate: as there is no poloidal current in the magnetosphere, it
corresponds to the vacuum solution.

Let us now consider a more general form for the current density
distribution:

JW) = Aja(b) = Ajgy (B + ). (26)

where A is a constant. In this case for the accelerating electric po-

tential in the polar cap of the pulsar we have the equation
1-A—vy

VIy+2A-D]

For the same boundary conditions (24), (23), the solution of this

equation is

V' =21+V") 27)

ﬂpC(ZA - 1)
20A—1)

V) = Vot 1—y+ {WA_“].

v+20A4-1)
(28)
This solution is valid for A # 1, 1/2. There is the same problem
as above with the electric potential in this solution. Namely, unless
Bpe = O the potential V is singular* on the rotation axis. The case
with A = 1/2 is also degenerate, because in that case the solution
for the electric potential is V() = Vo + 1 — v, which yields the
current density j(¢) = 0.
We see that solutions in which the current density is a constant
fraction of the actual GJ current density are not allowed, except
for a trivial degenerate case, corresponding to no net particle flow.

4The singularity arises because V'/(0) goes to infinity unless 1 + V’(0) =
B(0) is zero, as follows from equation (27).
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The naive physical picture does not work, and the current density
in the magnetosphere in terms of the actual GJ current density must
vary across the polar cap. On the other hand, the GJ current density
is itself a variable function across the polar cap; it also changes
with altitude within the acceleration zone, where the potential drop
increases until it reaches its final value. We therefore find it more
convenient to consider the current density in terms of the corotational
GJ current density.

3.2 Outflow with the current density as a linear function of the
magnetic flux in terms of the corotational Goldreich—Julian
current density

In models with space charge-limited flow (SCLF), in which charged
particles can freely escape from the NS surface (e.g. Scharlemann,
Arons & Fawley 1978), the charge density at the NS surface is always
equal to the local GJ charge density there, i.e. (p = p8])|,.:RNS. For
SCLF, the actual current density in the polar cap could be less than
Jj%, if the acceleration of the particles is periodically blocked in the
non-stationary cascades. The current density could be greater than
%, if there is an inflow of particles having an opposite charge to that
of the GJ charge density from the magnetosphere into the cascade
zone (e.g. Lyubarskij 1992). Therefore, an expression for the current
density in terms of the corotational GJ current density j2; would be
more informative from the point of view of the cascade physics than
an expression in terms of the local GJ current density j ;.

Let us consider the case in which the current density distribution
in the polar cap of the pulsar has the form

j=j&ay +b), (29)

where a, b are constants. The Michel current density distribution is
a particular case of this formula and corresponds to the values a =
—1, b = 1. The equation for the electric potential for this current
density is
’

i @Y b= (VI =Y o)

v2-v)
The solution of equation (30) satisfying the boundary conditions
(24), (23)is

V) =Vo+d+a)l —)

+% log[(2 — y) P32y a2 GD

We see that the potential is non-singular on the rotation axis if B, =
a + 2b. The admitted solution for the electric potential is therefore

V)=V0+1+a)1 —v)—2(a+ b)log(2 — ). (32)

In the rest of the paper we will use expression (32) for the elec-
tric potential. We will analyse the physical properties of force-free
magnetosphere configurations when the electric potential in the ac-
celeration zone of the polar cap has this form.

4 PROPERTIES OF ADMITTED
CONFIGURATIONS

4.1 Admitted current density

The potential drop in the polar cap of the pulsar is limited by the
vacuum potential drop. In our notation, this limit is formulated as
inequality (9). Parameters a, b from the expression for the electric
current (29) enter into the formula for the electric potential (32).
Imposing limitation (9) we obtain the admitted range for these pa-
rameters in the force-free magnetosphere. In Appendix A we carry

out such an analysis and find the region in the plane (a, b) that is
admitted by requirement (9). This region is shown as the grey area
in Fig. Al. From Fig. Al it is evident that for most of the admitted
values of the parameters a, b the current density has different signs
in different parts of the polar cap. There is also a region where the
values of the parameters correspond to the current density distribu-
tions having the same sign as the GJ charge density in the whole
polar cap.

The physics of the polar-cap cascades imposes additional lim-
itations on the current density and accelerating electric potential
distribution in the polar cap. There is at present no detailed the-
ory of non-stationary polar-cap cascades. In setting constraints on
the current density distribution we should therefore use simple as-
sumptions about the possible current density. There is a preferred
direction for the accelerating electric field in the polar cap. The
direction of this field is such that it accelerates charged particles
having the same sign as the GJ charge density away from the star.
It is natural to assume that the average current in the polar-cap cas-
cade should flow in the same direction. The average current could
flow in the opposite direction only if the accelerating electric field
were screened. In order to screen the accelerating field a sufficient
number of particles of the same sign as the accelerated ones should
come from the magnetosphere and penetrate the accelerating po-
tential drop. These particles, however, are themselves produced in
the polar-cap cascade. They must be reversed somewhere in the
magnetosphere and be accelerated up to an energy comparable with
the energy the primary particles receive in the polar-cap cascade.
Even if the problem of particle acceleration back to the NS could
be solved, screening of the electric field will interrupt the particle
creation, and, hence, there will not be enough particles in the mag-
netosphere to screen the electric field at the next moment of time.
Although the real physics is more complicated and is not yet fully
understood, the case of the unidirectional current in the polar cap is
worthy of detailed investigation, as it is ‘the most natural’ from the
point of view of the polar-cap cascade physics. In the following we
will call current of the same sign as the GJ charge density ‘positive’,
and current of the opposite sign to the GJ charge density ‘negative’.

The linear current density distribution (29) will be always positive
if
b > max(—a, 0). (33)

Only a subset of the admitted values of a, b corresponds to a positive
current density distribution. Such values of the parameters a, b are
inside the triangle-like region shown in Figs 2, 3 and 4. We see that
a wide variety of positive current density distributions are admit-
ted in the force-free magnetosphere: current density distributions
that are constant across the polar cap of the pulsar are admitted,
as are current densities decreasing or increasing towards the polar-
cap boundary. The current density in the force-free magnetosphere
could therefore deviate strongly from the classical Michel current
density, corresponding to the point @ = —1, b = 1. The price for
this freedom is the presence of a non-zero accelerating electric po-
tential in the polar cap. If the price for a particular current density
distribution is too high, that is, if the potential drop is too large, only
the magnetosphere of a very old pulsar could admit such a current
density. Let us now consider the distribution of the potential drop
in the parameter space (a, b).

4.2 Electric potential

We have already emphasized that the shape of the function V()
is very important for the resulting current density distribution.
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Figure 2. Maximum potential drop across the polar cap. The dotted lines
show contours of AVyx: contours for AV = 0.05, 0.1, 0.2, 0.3, 0.5,
0.8 are shown, with labels corresponding to the values of AV ax. The line
corresponding to AV .« = 0.05 is not labelled.

Figure 3. Ratio of the actual current density to the Goldreich—Julian current
density ¢(1) at the polar-cap boundary, where the minimum value of this ratio
is achieved (see text). The dotted lines show contours of ¢(1), labelled with
the corresponding value of ¢(1).

Figure 4. Spindown rate in terms of the Michel spindown rate. The dotted
lines show contours of w, labelled with the corresponding value of w.

However, as we do not understand in detail the physics of non-
stationary cascades, we cannot judge whether a particular form of
V() is admitted by the cascade physics or not. On the other hand,
in young pulsars the average potential drop cannot be very large,

© 2007 The Author. Journal compilation © 2007 RAS, MNRAS 379, 605-618

because a small fraction of the vacuum potential drop would be suf-
ficient for massive pair creation and screening of the accelerating
electric field. At present, therefore, we can judge the reasonableness
of a particular current density distribution only from the maximum
value of the potential drop it requires. The electric potential given
by equation (32) is known up to the additive constant V,, which is
the value of the accelerating potential at the polar-cap boundary. Vj
and thus the actual potential drop in the accelerating zone cannot
be inferred from the physics of the magnetosphere, and is set by
the physics of the polar-cap cascades. The only thing we can say
about the maximum potential drop in the acceleration zone along
field lines is that its absolute value is not smaller than the absolute
value of the maximum potential drop of V(i) across the polar cap.

Let us now consider possible values of the maximum potential
drop across the polar cap of the pulsar. If the potential is a monotonic
function of ¥ in the polar cap, the maximum potential drop is the
drop between the rotation axis and the polar-cap boundary. If the
potential as a function of ¢ has a minimum inside the polar cap,
the maximum potential drop will be either between the axis and the
minimum point, or between the edge and the minimum point. We
analyse this issue in detail in Appendix B. In Fig. 2 the contour
map of the maximum potential drop in the plane (a, b) is shown.
The line given by equation (B1) is the line for which, for fixed a
(or b), the smallest value of the potential drop across the polar cap
is achieved. From this plot it is evident that, even if the potential
drop in the polar cap is moderate, of the order of ~10 per cent, there
are force-free magnetosphere configurations for which the current
density distribution deviates significantly from the Michel current
density distribution. Thus even for young pulsars there may be some
flexibility in the current density distribution admitted by the force-
free electrodynamics.

Note that force-free magnetospheres impose different constraints
on pulsars in aligned p - € > 0 and anti-aligned p - © < 0 con-
figurations [pulsar and antipulsar in the terminology of Ruderman
& Sutherland (1975)]. For pulsars, the accelerating potential is pos-
itive; that is, it increases from the surface of the NS towards the
force-free zone above the pair-formation front. In the case of an
antipulsar, the potential is negative: it decreases towards the pair-
formation front, because positive charges are accelerated. Equa-
tions for the current density (15), (29) that we used to derive the
equation for the electric potential (30) contain the expression for
the GJ charge density as a factor, and, hence, the resulting expres-
sion for the electric potential is the same for each sign of the GJ
current density. For pulsars, there is thus a minimum in the accel-
erating potential distribution; for antipulsars, the distribution of the
accelerating electric potential has a maximum. Mathematically this
results from different signs of the integration constant V.

4.3 Angular velocity

The normalized angular velocity of the open magnetic field lines in a
force-free magnetosphere with the linear current density distribution
(29) is given by
2b +ay
22—y
For admitted current densities it grows with increasing i, because
the first derivative df/dy for the admitted values of a, b is always
non-negative. Thus the angular velocity either increases towards the

BW) = (34)

polar-cap boundary or remains constant over the cap if a = —b. The
latter case includes the Michel solution. The minimum value of S,
Brin = D, (35)
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is achieved on the rotation axis, where ¢ = 0, and the maximum
value,

Bmin = 2b +a, (36)

is achieved at the polar-cap boundary, where ¥ = 1. Therefore, the
open field lines can rotate more slowly, as well as faster than the
NS, but the lines near the polar-cap boundary cannot rotate more
slowly than the lines near the rotation axis.

4.4 Goldreich—Julian current density

An expression for the GJ current density in the polar cap can be ob-
tained by substitution of the expression (34) for 8 into equation (20)
for the GJ current density. We obtain
4b +ayr(4 — )
W -27

For the admitted values of the parameters a, b, the derivative d jg;/
dy is always non-negative, and, hence, the GJ current density either
increases towards the polar-cap boundary, or remains constant when
a = —b. The actual current density, however, could decrease or
increase towards the polar-cap edge.

For the charge-separated flow, the deviation of the current density
from the GJ current density generates an accelerating or a deceler-
ating electric field when j < jg; or j > jgj, respectively. Although
in non-stationary cascades the particle flow would not be charge-
separated, the ratio of the actual current density to the GJ current
density may give some clues on the cascade states required by a
particular magnetosphere configuration. This ratio is given by

W W =2P0b+ay)
Jar()  ay(d—y)+4b
For each admitted configuration, the current density is equal to the
GJ current density on the rotation axis. For the admitted values of the
parameters a, b the derivative d./d is always negative, and, hence,
the current density in terms of the GJ current density decreases
towards the polar-cap boundary. Therefore, except on the rotation
axis, the current density in the polar cap is always lower than the GJ
current density. The relative deviation of the actual current density
from the GJ current density is maximal at the polar-cap boundary:

Jar (W) = joy (37

() = (38)

a+b
1= . 39
‘D=3 39
Its maximum value, (,,,, = 1/3, occurs when b = 0. Its minimum
value, tmin = 0, occurs when a = —b, which includes the case of the

Michel current density distribution. The contours of (1) are shown
in Fig. 3.

4.5 Spindown rate and the total energy of the electromagnetic
field in the magnetosphere

In our notation, the spindown rate of an aligned rotator is (cf. equa-
tion 60 in Paper I)

Wpe
W =W / SW)B(W)dv|, (40)
0
where W, is the magnetodipolar energy losses defined as
B2RSQ*
Wia = ——o—. (41)
4¢3

Substituting the expression for the poloidal current (12) and using
the normalized flux function ¥ we obtain

1
W = Wg W2, / B Y2 — ) dy. (42)
0

The expression for the spindown rate in the Michel solution,
2

Wy = g\ygcwmd, 43)
differs from the spindown rate obtained in the numerical simula-
tions of the corotating aligned rotator magnetosphere by a constant
factor. It has, however, a very similar dependence on the size of the
corotating zone x (cf. equations 62 and 63 in Paper I). As our solu-
tions are obtained in the split-monopole approximation, they should
differ from the real solution in approximately the same way as the
Michel solution does. Because of this, it would be more appropriate
to normalize the spindown rate to the spindown rate in the Michel
split-monopole solution. By doing this we will be able to study the
effect of differential rotation on the energy losses separately from
the dependence of the spindown rate on the size of the corotating
zone.

For the normalized spindown rate in the considered case of a
linear current density we obtain

w
= W = 44*(3log2 —2)

+3ab(8log2 — 5) + 6b*(2log2 — 1). (44)

S

In Fig. 4 the contour lines of w are shown in the domain of admit-
ted values for the parameters a, b. We see that the spindown rate
can vary significantly, from zero to a value exceeding the Michel
energy losses by a factor of ~6. It increases with increasing val-
ues of the parameters a, b, and decreases with decreasing values.
This dependence of the spindown rate on the parameters a, b is
caused by an increase or decrease of the total poloidal current in the
magnetosphere, respectively.

The total energy of the magnetosphere can be estimated from
the split-monopole solution. Using the formula (C7) derived in
Appendix C we have for the total energy of the electromagnetic
field

R—R
W Wy + ——2W, (45)
p

where W, is the total energy of the poloidal magnetic field and R is
the radius of the magnetosphere. The first term in our approximation
is the same for all magnetosphere configurations; the difference in
the total energy arises from the second term. Hence, the contours
of constant total energy in the plane (a, b) have the same form
as the contours of the spindown rate W shown in Fig. 4. The total
energy of the magnetosphere increases with increasing values of the
parameters a, b; that is, it increases with increasing poloidal current.

4.6 Example solutions

As examples we consider here the properties of two particular solu-
tions in detail. We chose these solution because either their current
density or their potential drop seems to correspond to ‘natural’ states
of the polar-cap cascades. Although we do not claim that either of
the solutions can be realized as a real pulsar configuration, knowl-
edge of their properties may be helpful in understanding the physical
conditions that the polar-cap cascades should adjust to.

4.6.1 Configurations with constant current density

We first consider the case in which the current density is constant’
over the polar cap; that is, « = 0 and j = bj2;. A constant-density
distribution will be produced by cascades in their ‘natural’ state if

3For this class of solutions we label all physical quantities with the super-
script ‘c’.
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Figure 5. Electric potential in the polar cap of the pulsar as a function of the
normalized flux function ¥ for magnetosphere configurations with a constant
current density across the cap. In all cases V) is set to zero. Numbers near
the lines correspond to the following values of b. 1: b = 0; 2: b = 0.5; 3:
b = bmax/2; 4: b = 1; 5: b = bmax. The line corresponding to the minimum
potential drop across the cap is shown by the thick solid line (line 3).

the current adjustment proceeds locally, without a strong influence
from the current along adjacent field lines. The electric potential in
that case is

VW) =Vo+1—1y —2blog2 — ). (46)

This potential has the following properties (see Fig. 5, where V()
is shown for several values of b, assuming for the sake of simplicity
that Vy = 0):

(1) the admitted values of the current density in the polar cap of
the pulsar are within the interval [0, by« ], Where by, = 1/log2 =~
1.443.

(1) if 0 < b < bpax /2 =~ 0.721, the value of the electric potential
at the rotation axis V¢ (0) is larger than the value at the polar-cap
edge, V¢ (1),1.e. V¢ (0) > V¢ (1)

(iii) if bmax/2 < b < biax, the value of the electric potential at the
rotation axis V¢ (0) is smaller than the value at the polar-cap edge,
Ve (1),ie. Ve (0) < Ve (1).

(iv) if 0 < b < 1/2 or 1 < b < by, the potential is a monotonic
function of ¥; if 1/2 < b < by, it has a minimum.

(v) At the point b = by, /2, the maximum potential drop across
the polar cap reaches its minimum value, AV ,,x = 0.086.

The reason for this behaviour of the potential is easy to understand
from Fig. B1 in Appendix B. The critical points at which V(y)
changes its behaviour are the points at which the line a = O intersects
the boundaries of the regions I, II, III, and I'V.

The angular velocity of the open magnetic field lines is
B(W) = . A7)

2-vy

The distribution of the corresponding angular velocity is shown in
Fig. 6. For b > 1 the angular velocity of rotation of all open magnetic
field lines is greater than the angular velocity of the NS. For b <
1/2 all magnetic field lines rotate more slowly than the NS. For
1/2 < b < 1 some open field lines near the rotation axis rotate more
slowly than the NS, whereas other open field lines rotate faster than
the NS.

The current density distribution in terms of the GJ current density
is

c 1 2
() = 1(2 —v), (48)
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Figure 6. Normalized angular velocity of the open magnetic field lines as a
function of the normalized flux function ¥ for magnetosphere configurations
with a constant current density across the cap. Labelling of the curves is as
in Fig. 5.
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Figure 7. Current density as a function of the normalized flux function ¥
for magnetosphere configurations with a constant current density across the
cap. Labelling of the curves is as in Fig. 5. The thick grey line shows the
ratio of the actual current density to the GJ current density ¢(y/). For this
case () is the same for all solutions.

which does not depend on the value of the parameter b. The current
density is always sub-Goldreich—Julian, except on the rotation axis,
where it is equal to the GJ current density (see Fig. 7).

The normalized spindown rate for the considered case has a sim-
ple quadratic dependence on the current density:

w® = 6(log4 — 1)b>. (49)

This dependence is shown in Fig. 8. The energy losses in a config-
uration with a constant current density cannot be higher than ~4.82
of the energy losses in the corresponding Michel solution.

It is worthwhile to mention the case b = 1 separately, as it is ‘the
most natural’ state for the space charge-limited particle flow, for
which the current density at the surface of the NS is equal to the
corotational GJ current density. In Figs 5, 6 and 7 the lines corre-
sponding to this case are labelled with a ‘3’. The maximum potential
drop for the configuration with the current density distribution equal
to the corotational GJ current density is AV ;,x = 0.386, and the an-
gular velocity of the open field lines varies from 1 at the rotation
axis to 2 at the polar-cap boundary.

4.6.2 Configurations with the smallest potential drops

For the next example we consider the case in which the maximum
potential drop across the polar cap for a fixed value of either a or b is
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w

Figure 8. Spindown rate of an aligned rotator normalized to the spindown
rate in the Michel solution for magnetosphere configurations with a constant
current density across the cap as a function of the current density in the polar
cap (parameter b).
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Figure 9. Electric potential in the polar cap of the pulsar as a function of
the normalized flux function ¥ for magnetosphere configurations with the
smallest potential drop across the cap. In all cases V/ is set to zero. Numbered
lines correspond to the following values of a. 1: a = —1 (Michel’s solution);
2: a = 0 (solution with a constant current density); 3: a = 1; 4: a = 2; 5:
a=1/(log4 —1).

minimal®. The points corresponding to such values of the parameters
are shown as a thick grey line in Figs 2, 3 and 4. The equation for
this line in the plane (a, b) is derived in Appendix B, equation (B1).
In some sense this is an optimal configuration for the cascade zone,
because for a fixed value of the current density at a given magnetic
field line such a configuration requires the smallest potential drop
for the admitted configurations. The accelerating potential for the
considered class of configurations is

log(1 — W/Z)}

50
log?2 (°0)

Vi) =Vo—(a+1) {1// +
The potential is shown as a function of v in Fig. 9 for several
cases, assuming for the sake of simplicity a zero potential drop at
the polar-cap boundary. The potential always has a minimum at the
point

1
Yl =2 — o3 = 055T: (51)

®For this class of solutions we label all physical quantities with the super-
script ‘s’ (smallest).
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Figure 10. Normalized angular velocity of the open magnetic field lines as a
function of the normalized flux function v for magnetosphere configurations
with the smallest potential drop across the cap. Labelling of the curves is as
in Fig. 9.

the position of this minimum does not depend of the values of g, b.
The minimum value of the maximal potential drop across the cap,
min (AV ) = 0, is achieved at the left end of the grey line, at the
point (¢ = —1, b = 1) corresponding to the Michel solution. The
maximum potential drop across the gap for this class of configura-
tions, max (AV ) = 0.309, is achieved at the right end of the grey
line, at the point (a = 1/(log4 — 1), b =0).
The angular velocity of the open field lines is
a+1
—— —a
2 - y)log2
The distribution of B°(¢) is shown in Fig. 10. For values of ¢ lower
than v} . , where the minimum value of the potential is achieved,
B is not greater than 1; for larger values, 8 is not less than 1. As
the maximum potential drop increases, the variation of the angular
velocity across the polar cap becomes larger.
The current density distribution in the considered case has the
form

B () = (52)

) 1 —log4 1
S =ay + % 53)

This distributions is shown in Fig. 11. All curves pass through the
point ¥ = 1 — 1/log4, where the current density is j5(}}) =
78,/ log4.
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Figure 11. Current density as a function of the normalized flux function ¥
for magnetosphere configurations with the smallest potential drop across the
cap. Labelling of the curves is as in Fig. 9.
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Figure 12. Ratio of the actual current density to the GJ current density ¢ as a
function of the normalized flux function ¥ for magnetosphere configurations
with the smallest potential drop across the cap. Labelling of the curves is as
in Fig. 9.

Figure 13. Spindown rate of an aligned rotator normalized to the spindown
rate in the Michel solution for magnetosphere configurations with the small-
est potential drop across the cap as a function of the parameter a.

The current density distribution in terms of the Goldreich—Julian
current density is

(Y —2)*[(y — Dalogd +a +1]
V(@4 —Y)alogd +4a(l —log4) + 4

It decreases monotonically from 1 at the rotation axis to its minimum
value at the polar-cap boundary (see Fig. 12). This minimum value is
inthe range [0, 1/3]; the lower value corresponds to the left end of the
grey curve (the Michel solution), and the upper value corresponds
to the right end of the grey line. The outflow is sub-GJ everywhere
except on the rotation axis.

The normalized spindown rate for the considered case is

CY) = (54)

1
s = 210g?2 — 3(1 — log 2)]a>
w 210g22{[ og (1 —log2)]a

—3(2 —3log2)a — 3(1 —2log2)}. (55)

It is shown as a function of the parameter a in Fig. 13. It can be seen
that for the considered configuration the spindown rate as a function
of the parameter a increases more slowly than the spindown rate for
configurations with a constant current density as a function of b (cf.
Fig. 8). The energy losses cannot be higher than ~2.13 of the energy
losses in the corresponding Michel solution.
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5 DISCUSSION

The main aim of this paper was to study the range of admitted
current density distributions in the force-free magnetosphere of an
aligned rotator. Taking into account that this subject has not previ-
ously been studied in detail, the linear model used in this work is,
in our opinion, an adequate approach to the problem. Knowledge of
the behaviour of the magnetosphere in response to various potential
drops in the polar cap is likely to be very useful for future modelling
of non-stationary polar-cap cascades. This formalism could be used
as a tool for allowing a quick judgement to be made on whether
a particular model of the polar-cap cascades is compatible with a
force-free magnetosphere or not. It may also provide a clue as to
how the magnetosphere would respond to a particular current den-
sity distribution obtained at some step in the course of the numerical
solution. Although the analytical model presented here needs to be
refined in numerical simulations, the presence of some analytical
relationships should be very useful in the numerical modelling of
cascades.

‘We have considered here a simple case in which the current den-
sity in the polar cap of a pulsar is a linear function of the magnetic
flux. However, the generalization of the model to a more compli-
cated shape of the current density distribution is straightforward.
One should proceed with the steps described at the beginning of
Section 3 for the desired form of the current density distribution.
The resulting equation for the electric potential will be an ordinary
differential equation, and the numerical solution of such an equa-
tion for any given current density will not be a problem.

The conclusion we wish to emphasize from the presented results
is that, even for a fairly moderate potential drop in the acceleration
zone, the current density distribution can deviate significantly from
the ‘canonical’ Michel distribution. We note that even for dipole
geometry the current density distribution is similar to the Michel
distribution if all magnetic field lines corotate with the NS (see
Paper I). In particular, a magnetosphere configuration with a con-
stant current density at the level of 73 per cent of the GJ current
density at the NS surface would require a potential drop in the ac-
celeration zone of the order of 10 per cent of the vacuum potential
drop. For time-dependent cascades this may be realized even for
young pulsars. It should be noted, however, that for young pulsars
a potential drop of the order of 10 per cent of the vacuum drop
could cause overheating of the polar cap by means of the parti-
cles accelerated towards the NS (e.g. Harding & Muslimov 2001;
Harding & Muslimov 2002). In that sense, such a potential drop
may be too large for young pulsars. On the other hand, without
knowledge of the dynamics of non-stationary cascades it is in our
opinion too soon to exclude the possibility of such configurations for
young pulsars, as in a non-stationary regime the heating of the cap
may not be as strong as in stationary cascades (see Levinson et al.
2005).

We used a split-monopole approximation for the poloidal current
density distribution in the magnetosphere, which produces accurate
results only for configurations with a very small corotating zone,
when the size of the zone is much less than the size of the light
cylinder xo < 1/8(W¥ ) (see Fig. 1). For the (most interesting) case
for which these sizes are comparable, the results obtained in this
work can be considered only as a zero approximation to the real
problem. We note here an important modification introduced by
the dipole geometry of the magnetic field. For the dipole geometry
there will be some magnetic field lines that bend to the equatorial
plane at the light cylinder. For these field lines the second term on
the right-hand side of equation (4) [which in cylindrical coordinates
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(w,p,z)is280, V] will be negative, and in order to obtain a positive
current density along these lines a steeper dependence of 8 on
is necessary. As a result, the potential drop in the dipole geometry
will be higher than that obtained in our approximation. Figuratively
speaking, in our model we could correct only for the decrease of
the electric current density towards the polar-cap boundary present
in the Michel solution, but not for the negative current density near
the edge of the polar cap that is present in the dipole geometry for
configurations with xo > 0.6. On the other hand, if (W) > 1,
the size of the corotating zone can be smaller as well as greater’
than the light-cylinder radius at the last open field line. In the latter
case there should be fewer magnetic field lines that bend towards
the equatorial plane than in the first case, cf. Fig. 1 cases I and II.
Hence, the correction introduced by the dipolar field geometry for
some subset of our solutions will be non-monotonic as the size of
the corotating zone x, increases. There is therefore still a possibility
that a moderate potential drop could allow a large variety of current
densities, although this issue needs careful investigation.

In this paper we have ignored the electrodynamics of the polar-
cap zone. Although without a theory of time-dependent cascades
we cannot put more limitations on the electric potential than the
limitation we used in Section 2.2, there is an additional limitation
arising from the basic electrodynamics, namely that the accelerating
potential near a conducting wall, which the current sheet at the polar-
cap edge is believed to be, should approach zero. We could, however,
speculate that there is a thin non-force-free zone at the edge of the
polar cap where the adjustment of the potential occurs. In other
words, the return current may flow only in a part of the non-force-
free zone. Because of this, that limitation would not place strong
restrictions on our solution.

Finally, we would like to discuss briefly the issue of the pulsar
braking index. If the inner pulsar magnetosphere is force-free, the
spindown rate of an aligned pulsar as a function of the angular
velocity will deviate from the power law W oc Q* if the size of the
corotating zone and/or the distribution 8(¢) change with time. The
assumption that these ‘parameters’ are time-dependent seems to us
to be natural, because with the ageing of the pulsar the conditions in
the polar-cap cascade zone change and the magnetosphere should
adjust to these new conditions. In the framework of our model we
could make some simple estimations of how the braking index of
the pulsar is affected by the changes of these two ‘parameters’.

As an example we consider the case for which the pulsar mag-
netosphere evolves through a set of configurations with a constant
current density. The spindown rate for such configurations is

W o QU2 b ~ Q% (56)

where we estimate W,. assuming a dipole field in the corotation
zone. If b and/or xj are functions of time, the spindown rate will
be different from the spindown of a dipole in a vacuum. If at some
moment the dependence of the size of the corotating zone and the
current density on © could be approximated as xo o< ¢ and b o
Q¢, respectively, the braking index of the pulsar measured at that
time would be

n=3-2&42¢. (57)

It can be seen that the deviation of the braking index from the ‘canon-
ical’ value, being equal to 3, would be by a factor of two larger than

7For the closed magnetic field lines the angular velocity is €2, and they are
still inside their light cylinder; the adjustment of the angular velocity occurs
in the current sheet, which is a non-force-free domain.

the dependence of b and xj on 2. The braking index could be smaller
as well as larger than 3, depending on the sign of the expression
¢ — &. For instance, if in an old pulsar the potential drop increases
and, as a consequence, the current density decreases, ¢ is positive,
and the braking index could be greater than 3. We note that there
is evidence for such values of the braking index for old pulsars
(Arzoumanian, Chernoff & Cordes 2002). On the other hand, if x
decreases with time, as was proposed in Paper I for young pulsars,
the braking index would be less than 3. However, even for an aligned
rotator a more complicated dependence of the braking index on the
pulsar age may be possible. In reality, the evolution of the pulsar
magnetosphere will be more complicated, and a steeper as well as a
more gradual dependence of the braking index on the current density
will be possible. This will result in a wide range of possible values
of the pulsar braking index.
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Figure Al. Values of the parameters a and b admitted by the requirement
that the maximum potential drop across the polar cap is less than the vacuum
potential drop. The dotted lines 1 and 1’ show the boundary of the region
where the potential has an extremum in the polar cap. Line 2 corresponds
to AVyp = 1, and line 2’ corresponds to AV 19 =—1. Line 3 corresponds to
|AVe| = 1, and line 4 corresponds to |AV¢| = 1. Line 2 corresponds to
b = —a. The resulting admitted region is shown in grey. See text for further
explanations.

APPENDIX A: ADMITTED CURRENT
DENSITY

The second derivative of V() with respect to v is

N (A1)
Q—y)

For fixed a and b, the second derivative never changes sign, and
hence V(¥) has a single extremum. If a + b > 0, V() has a single
minimum; in the plane (@, b) shown in Fig. A1l these points lie to
the right of line 5. If @ + b < 0, V(v) has a single maximum, and
such points lie to the left of line 5 in Fig. Al. The potential reaches
its extremum value at the point

1-b
1/fex=2a+1. (A2)
This point lies in the interval [0, 1] if
l}b}l_Ta, fora > —1;
1<b< 2% fora<-1. (A3)

In Fig. A1, points at which these conditions are satisfied lie between
the lines 1 and 1’, in the region where the angle between the lines is
acute. Line 1 corresponds to values of @, b for which the extremum
of the potential is reached at the polar-cap boundary. Line 1" corre-
sponds to values of a, b for which the extremum of the potential is
reached at the rotation axis.

If Yo is outside the interval [0, 1], V(1) is a monotonic function
of ¢ in the polar cap of the pulsar, and the maximum potential
drop is the potential drop between the edge of the polar cap and the
rotation axis. In this case, condition (9) takes the form

[AVil <1, (A4)

where AV o =V(1) — V(0) is the potential drop between the bound-
ary of the polar cap and the rotation axis. In terms of the parameters

a, b it can be written as
al—log4<b< 1 1—10g4.

X X 7 A a (AS)
log4 log2 log4

© 2007 The Author. Journal compilation © 2007 RAS, MNRAS 379, 605-618

In Fig. Al points satisfying this condition lie between lines 2 and
2’. In the region where the angle between lines 1 and 1’ is ob-
tuse (here the point ¥ is outside the interval [0, 1]), the lines 2
and 2’ set the boundaries for admitted values of the parameters a
and b.

If the electric potential reaches its extremum value inside the
polar cap, the maximum potential drop is achieved either between
the extremum point and the edge of the polar cap, or between the
extremum point and the rotation axis. In this case, condition (9)
takes the form

max(|AVeel, |AVie]) < 1, (A6)

where AVy. = V(0) — V(¥) is the potential drop between the
rotation axis and the point ¥, and AV, = V(1) — V(Ye) is
the potential drop between the polar-cap boundary and the point
Vex. The expression for the extremum value of V is non-linear with
respect to a, b:

2(a + b)

V(l;[/ex):vo_1+a+2b—2(a+b)10g|: +a

] , (A7)

and condition (A6) in terms of a, b should be evaluated numerically.
For a fixed a, the derivatives of AV, and AV, with respect to b are

d AV b
© _log (L2, (AS)
db 1+a
dAVy. a+b
=21log [ L2} 4+ 10g4. A9
db Og(1+a)+°g (A9

If ¥ex € [0, 1], condition (A3) is fulfilled, d AV, /d b is positive and
d AV /d b is negative. So, for a fixed a when V¥, € [0, 1], AV,
decreases and AV |, increases with increasing b.

In Fig. A1, line 3 represents points for which |AV.| = 1, and
line 4 represents points for which |AV¢.| = 1. To the right of line
5, V() has a minimum, and the lines 3 and 4 represent points for
which AV, = 1 and AV, = 1, respectively. To the left of line
5,V (1) has a maximum, and here the lines 3 and 4 correspond to
AV = —1 and AVy. = —1. Line 4 always lies outside the re-
gion between lines 1 and 1’, and, hence, the absolute value of the
potential drop between the extremum point and the rotation axis
|AVqe| never achieves the vacuum potential drop when the ex-
tremum point is inside the interval (0, 1).

AV . increases with increasing b. So, below curve 3 to the right
of line 5, and above curve 3 to the left of line 5, | AV, is less than
1. Hence, when v € [0, 1] (a, b are in the region between lines
1 and 1’), the admitted values of a and b are limited by the lines
3 and 2’ to the left of line 5, and by lines 2 and 3 to the right of
line 5.

Combining all the discussed restrictions we obtain the region of
admitted values of the parameters a and b, shown as the grey area
in Fig. Al.

APPENDIX B: THE MAXIMUM POTENTIAL
DROP ACROSS THE POLAR CAP

In Fig. B1 the dotted lines 1 and 1’ limit the region® in the parameter
space (a, b) where the potential in the polar cap is a non-monotonic
function of ¥, and it has a minimum at some point ¥ € (0, 1)
(see Appendix A). In the regions III and IV the potential V() is a
monotonic function of .

8Regions I and II together.
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Figure B1. Region of admitted values of the parameters @ and b correspond-
ing to current densities of the same sign as the Goldreich—Julian current
density. The dotted line 1 shows points for which AV | = 0; line 1’, points
for which AV, = 0. The thick grey line shows points for which [AV| =
[AV1e |. Inregion I, AViax = AVie; in region II, AV pax = AVe; and in
regions IT and IV, AV pax = |AVg]. See text for further explanations.

The potential drop AV = V(0) — V() between the rotation
axis and the point 1 .x where V(i) achieves its minimum value for a
fixed a decreases with increasing b. For a, b on line 1', ¥, is on the
rotation axis, and AV, = 0 there. The potential drop AV . = V(1)
— V(¥ ex) between the polar-cap boundary and the point ¥ for a
fixed a increases with increasing b. For a, b on line 1, ¥/ is at the
polar-cap boundary and AV, = 0. Therefore, AV, increases in the
direction from line 1’ to line 1, and AV, increases in the direction
from line 1 to line 1'.

Along some line between lines 1’ and 1 the potential drops
AV, and AV, become equal. This means that the potential drop
AV = V(1) — V(0) between the polar-cap edge and the rotation
axis is zero there. The equation for this line is easily obtained from
the requirement AV o = 0:
_ L ta 1 —log4

log4 log4
This line is shown in Fig. B1 as the thick grey line. Above the grey
line AV, > AV, and below it AV, < AVq. Hence, the line
given by equation (B1) is the line for which the maximum potential
drop across the polar cap achieves its minimum value for fixed
aorb.

Taking all this into account we conclude that the maximum po-
tential drop across the polar cap AV . is equal to the following
potential drops: in region I, to AV; in region II, to AV.; and in
regions III and IV, to |AV y|.

b (B1)

APPENDIX C: ENERGY OF THE
ELECTROMAGNETIC FIELD IN THE
SPLIT-MONOPOLE CONFIGURATION

The energy density of the electromagnetic field in the magneto-
sphere is

1 2 2 2
w= o (E” + Bpy + B}). (¢)

For the split-monopole solution, when ¥ = W,.(1 — cos#@), the
non-zero components of the electric and magnetic fields are

n sin 6

Ey=—— VYV, —, C2
[ Ric pcﬂ - ( )
v
B =L T ()
Ric 7
" sin
LC U

The electric field is therefore equal to the toroidal magnetic field:
Ey = B,. The total energy of the magnetosphere is then

w= L / (B} +2E7) dv. (C5)

87

On the other hand, the energy losses are

[E x B], ~ E} .
W = c———dQ = c—d<, (C6)
i 47t e 4T

where  is a solid angle. Using equations (C6) and (C3) we can
rewrite expression (C5) for the total energy of the electromagnetic
field as

W — Wmd
g )
w2 R? 1 1 w
pc'LC
—— — — | + —(R — Rng),
5 (RNS R) + B ( Ns)

where R is the size of the magnetosphere, i.e. the distance up to which
its dynamics is determined by the central object. W4 represents
the magnetodipolar energy losses, given by equation (41). The first
term represents the total energy of the poloidal magnetic field and
is the same for all configurations with different potential drops. The
second term, being the sum of the energies of the electric field and
the toroidal component of the magnetic field, is different for different
values of the accelerating potential. It is directly proportional to the
energy losses in a particular configuration.
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