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ABSTRACT
I argue that the problem of electromagnetically driven electron–positron cascades in mag-
netospheres of neutron stars must be addressed starting from first principles. I describe a
general numerical algorithm for doing self-consistent kinetic simulations of electron–positron
cascades – wherein particle acceleration, pair creation and screening of the electric field are
calculated simultaneously – and apply it to model the Ruderman & Sutherland cascade in one
dimension. I find that pair creation is quite regular and quasi-periodic. In each cycle a blob of
ultra-relativistic electron–positron plasma is generated; it propagates into the magnetosphere
leaving a tail of less relativistic plasma behind, and the next discharge occurs when this mildly
relativistic plasma leaves the polar cap. A short burst of pair formation is followed by a longer
quiet phase when accelerating electric field is screened and no pairs are produced. Some of
freshly injected electron–positrons pairs get trapped in plasma oscillations creating a popula-
tion of low-energy particles. The cascade easily adjusts to the current density required by the
pulsar magnetosphere by reversing some of the low-energy particles. Each discharge generates
a strong coherent superluminal electrostatic wave, which may be relevant for the problem of
pulsar radioemission.

Key words: acceleration of particles – plasmas – stars: magnetic field – stars: neutron –
pulsars: general.

1 IN T RO D U C T I O N

Rotation-powered pulsars remain a profound puzzle despite the fact
that the first pulsar was discovered 40 yr ago (Hewish et al. 1968). A
pulsar is a rapidly rotating, strongly magnetized neutron star (NS),
as it was originally proposed by Gold (1969) and Pacini (1967),
with most of its radiation produced in the magnetosphere. How-
ever, there is still no consistent quantitative pulsar model. Proposed
models range from a NS with charge-starved electrosphere (Krause-
Polstorff & Michel 1985) to a NS with force-free magnetosphere,
where acceleration of particles and, hence, emitting zones are lo-
calized in very small spatial regions (Goldreich & Julian 1969).

The force-free magnetosphere model is favoured by the majority
of astrophysicists working on pulsars. There are observational hints
favouring this model: (i) young pulsars produce relativistic winds
with particle number density much larger than it is necessary to
screen accelerating electric field parallel to the magnetic field; (ii)
pulse peaks are narrow, what points to smallness of emitting regions,
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and, hence, to smallness of regions where particles are accelerated.
From theoretical point of view, as it was pointed out by Sturrock
(1971), physical conditions in the polar cap of pulsar are almost ideal
for generation of electron–positron pair plasma. The energy density
of the generated plasma is negligible compared to the energy density
of the magnetic field near the NS. The magnetosphere, if filled with
plasma, almost certainly being force-free (almost everywhere) near
the NS should be force-free at much larger scales as well; at least
numerical simulations of the force-free magnetosphere of an aligned
rotator have shown that magnetosphere can remain force-free up
to distances much larger than the light cylinder radius (Timokhin
2006).

Therefore, pursuing the force-free model as a ‘standard model’
seems to be reasonable. Recently the force-free pulsar magneto-
sphere model has been studied in great detail (e.g. Contopoulos,
Kazanas & Fendt 1999; Gruzinov 2005; Timokhin 2006, 2007a;
Spitkovsky 2006; Kalapotharakos & Contopoulos 2009; Bai &
Spitkovsky 2010). The force-free magnetosphere is a restricted
magnetohydrodynamic system which does not admit any current
density distribution. By fixing the boundary conditions – in the case
of a pulsar these are the variation of accelerating potential across
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the polar cap and the size of the corotating zone – one fixes the
current density distribution. It turns out that the admitted range of
current density distributions in the force-free magnetosphere with
realistic boundary conditions – when the potential drop in the polar
cap is less than a vacuum one – is rather limited (Timokhin 2006,
2007a,b). For young pulsars, where potential drop in the polar cap
must be small, the current density is not constant and strongly devi-
ates from the Goldreich–Julian (GJ) current density jGJ ≡ ηGJc (ηGJ

is the GJ charge density and c is the speed of light); along some
magnetic field lines it has the sign opposite to the sign of the GJ
charge density.

Pair production in the polar cap of pulsar is vital for sustaining of
the force-free magnetosphere – without it there will be not enough
plasma to cancel the accelerating electric field. Currents flowing
in the open field line zone of the magnetosphere flow through the
pair-producing region at the base of the polar cap; therefore, any
model of the polar cap cascade zone must agree with a global mag-
netosphere model on the current density flowing along magnetic
field lines. Many previously proposed models for polar cap cas-
cades (and almost all quantitative models) assumed stationary uni-
directional outflow of a charge separated particle beam (e.g. Arons
& Scharlemann 1979; Daugherty & Harding 1982; Muslimov &
Tsygan 1992; Harding & Muslimov 2002; Hibschman & Arons
2001a). All these models predicted current density being almost
equal to the GJ current density everywhere in the polar cap of
pulsar. This prediction is in strong disagreement with the force-free
magnetosphere model: for young pulsars like Crab a deviation of the
charge density from ηGJ of the order of few per cents – and in unidi-
rectional flow this implies the same deviation of the current density
from jGJ – can account for all pulsar emission. Both sides of this dis-
crepancy are based on detailed simulations and it is not possible to
change some parameters in order to fit the models together. So, either
the magnetosphere is non-force-free or non-stationary (or both) or
polar cap cascades do not operate according to the existing models.

From the energetic point of view a stationary (on the rotation
time-scale) force-free configuration seems to be the most preferable
state of the magnetosphere. The inductance of the magnetosphere is
much larger than that of the polar cap, therefore, the current density
in the polar cap will be set by the magnetosphere and not in the
opposite way (e.g. Mestel 1999). In my opinion these are strong
hints that existing quantitative models for particle acceleration and
pair production in pulsar polar cap do not work. Particle accelera-
tion and electron–positron pair production in cascade zones can be
essentially non-stationary: time intervals of effective particle accel-
eration could alternate with intervals when the accelerating electric
field is screened by electron–positron pairs created in the cascade;
in fact, in the first paper on pulsar cascades (Sturrock 1971) the
particle flow was assumed to be non-stationary. The current den-
sity flowing through non-stationary cascade fluctuates strongly and
the amplitude of the fluctuation should depend on the microphysics
of the pair-generation process, not on the global physics of the
magnetosphere. However, the characteristic time-scale of polar cap
cascades (microseconds) is much shorter than the magnetospheric
time-scale (longer than milliseconds) so that all fluctuations due to
cascade non-stationarity will be washed out. The average current
density in the cascade zone could be adjusted to the current density
required by the magnetosphere by adjusting the time cascade spent
in ‘active’ and ‘passive’ phases. On the other hand, it is still possi-
ble that particle flow in the cascade zone is nevertheless stationary
but not unidirectional – with some particles trapped in a non-trivial
accelerating potential (Arons 2009). However, all these qualitative
statements have to be proved.

Electromagnetically driven electron–positron cascades can oper-
ate not only in polar caps of radiopulsars. Some pulsars in outer
parts of their magnetospheres – close to the place where the GJ
charge density changes the sign – could have so-called ‘outer-gap’
cascade zones (Cheng, Ruderman & Sutherland 1976); although
it seems that such acceleration zone can exist only if polar cap
cascades fail to supply enough pair plasma to short-out the elec-
tric field in the entire magnetosphere. Electromagnetically driven
cascades should generate plasma in magnetospheres of magnetars
along open (Thompson 2008) as well as closed magnetic field lines
(Beloborodov & Thompson 2007). Electron–positron cascades can
also work in magnetospheres of black holes (Beskin, Istomin &
Parev 1992). The study of pair cascade dynamics is, therefore, of
significance for a broad class of astrophysical problems.

Non-stationary regime of electromagnetically driven cascades is
poorly investigated. Only few attempts have been made before to
construct quantitative models for non-stationary cascades. Al’Ber,
Krotova & Eidman (1975) were the first, their model was 0D – it
accounted only for variability in time. It predicted strong time vari-
ability in pair creation rate due to the delay between emission of
a high-energy photon and its decay into an electron–positron pair.
Fawley (1978) tried to make a numerical model for Ruderman &
Sutherland (1975) cascade using 1D particle-in-cell (PIC) code and
a simple version of on-the-spot approximation for pair injection. At
that time it was a formidable numerical problem; simulations could
be performed only for a very short time after cascade ignition, so
that no conclusive results could be drawn from them. Levinson
et al. (2005), Luo & Melrose (2008), Melrose, Rafat & Luo (2009)
used 1D two-fluid approximation for electron–positron plasma and
on-the-spot approximation for pair injection; they studied polar
cap cascades operating in the space charge limited flow regime
and found that generation of pairs is essentially turbulent – pair
were created throughout all physical region admitting pair creation.
Beloborodov & Thompson (2007) studied pair cascades in the
closed field line zone of magnetar magnetosphere. They used on-
the-spot approximation for pair injection and tracked motion of
electrons and positrons in self-consistently calculated electric field;
the electric field was assumed to be zero at both ends of the field
line. They too concluded that pair creation is turbulent.

In all of these models some or other simplifying assumptions
about physical processes at play were used. It is difficult to draw
decisive conclusions about the character of particle flow pattern
from them because it is not clear a priori whether ignoring one of
the aspect of cascade physics can result in qualitatively different
behaviour or not. In my view, the study of electron–positron cas-
cades should be done starting ab initio. No assumptions about the
character of particle flow should be made and the key ‘ingredients’
of the system must be preserved in the model: back reaction of
particles on the accelerating electric field and the delay between
photon emission and pair injection. Possible complexity of system
behaviour compels to conduct a numerical experiment where par-
ticle acceleration, pair production and variation in the accelerating
electric field are modelled self-consistently.

With this paper, I intend to start a series of publications dedicated
to self-consistent numerical modelling of full kinetics of electron–
positron pair cascades in magnetospheres of NSs. In this paper
I describe a numerical algorithm for self-consistent modelling of
electromagnetic cascades starting from first principles and apply it
for study of the most simple model of polar cap cascade – when
particles cannot escape the NS surface – the Ruderman & Sutherland
(1975) model. The goal of this work is not merely to quantify the
Ruderman–Sutherland model but to try to infer basic properties of
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electromagnetic cascades. The most important qualitative questions
about basic cascade properties I try to answer are (i) what is the
character of plasma flow and (ii) how the pair cascade adjusts to the
current density required by the magnetosphere.

The structure of the paper is as follows. In Section 2, I describe the
general numerical algorithm I developed for modelling of electro-
magnetic cascades. In Section 3, I describe physical and numerical
aspects of the polar cap cascade model. Simulations results and their
analysis are presented in Section 4; I summarize the inferred cascade
properties in Section 4.6. In Section 5, I discuss limitations of the
model, applicability of physical approximations used in previous
works and implication of the results for physics of radiopulsars.

2 G E N E R A L N U M E R I C A L A L G O R I T H M

In electromagnetically driven pair cascade in NS magnetosphere
the following physical processes determine the behaviour of the
system.

(i) Charged particles – electrons and positrons – are accelerated
by the electric field induced by NS rotation.

(ii) Particles emit high-energy gamma-rays. The radiation mech-
anisms relevant for pulsars include curvature radiation, inverse
Compton scattering (in both resonant and non-resonant regime)
of thermal X-ray photons emitted by the NS, and synchrotron radi-
ation of freshly created pairs (e.g. Sturner, Dermer & Michel 1995;
Zhang & Harding 2000).

(iii) Gamma photons propagate some distance and then create
electron–positron pairs. In pulsar polar cap the dominating pro-
cess is the single photon pair creation in the strong magnetic field
(Sturrock 1971). In the outer pulsar magnetosphere, the dominant
process will be photon–photon pair creation either on soft photons
emitted by the NS (thermal X-rays) or on soft photons produced in
the cascade itself (Cheng, Ho & Ruderman 1986).

(iv) Creation of electron–positron pairs increases plasma den-
sity and changes the electric field: if a pair is created in a region
with strong electric field, electron and positron are accelerated in
opposite directions and redistribution of the charge density alters
the accelerating electric field.

Probably the best numerical technique for self-consistent mod-
elling of plasma kinetics – acceleration of charged particles and
changes of electromagnetic fields induced by their motion [Items
(i) and (iv) in the list] – is Particle-In-Cell (e.g. Birdsall & Langdon
1985). There particle distribution is modelled directly by represent-
ing plasma by an ensemble of macroparticles. PIC is a mature nu-
merical technique. Many of its properties are well known and are the
subject of constant ongoing investigations (e.g. Verboncoeur 2005).
Although on the current stage of the project 1D modelling is used,
PIC allows straightforward generalization for multi-dimension. Par-
ticle emission and creation of electron–positrons pairs – a radiation
transfer problem [Items (ii) and (iii)] – in a system with strongly
and rapidly changing particle energy distribution are best to model
utilizing the Monte Carlo technique (e.g. Sobol’ 1973; Fishman
1996); the computational costs of Monte Carlo are almost the same
for 1D and multi-dimensional cases. On the other hand, in PIC
plasma is already represented by discrete particles, which makes
Monte Carlo a natural choice. For modelling of pair cascades I de-
cided to develop a new hybrid PIC/Monte Carlo code. The existing
hybrid codes used for modelling of gas discharges do not include
radiation transfer and account only for interaction between charged
and neutral particles; the Monte Carlo technique there is used to
account for interaction randomness.

The mean-free path of gamma-photons does not depend on the
plasma density in the polar cap; it is set by the strength of the
magnetic field and by the curvature of magnetic field lines. For the
minimum mean-free path of photons, the estimate of Ruderman
& Sutherland (1975) can be used, which gives λmfp ∼ 103 cm. In
space charge limited flow models photon mean-free path could
be comparable to the NS radius, λmfp ∼ 106 cm. Characteristic
plasma scales are of the order of the Debye length which depend on
plasma density. A rough estimate for the Debye length can be made
assuming plasma density being equal to the GJ number density
nGJ = ηGJ/e:

λGJ
D ∼ c

ωGJ
p

= c

(
4πηGJe

me

)−1/2

� 2B
−1/2
12 P −1/2 cm , (1)

where B12 is the pulsar magnetic field in units of 1012 G and P
is the pulsar period in seconds. The photon mean-free path is
much larger than the Debye length, and so it sets the macroscopic
scale – the length of the computational domain. The Debye length
of the plasma sets the microscopic scale of computations – the cell
size. It will be unwise to advance photons in space at the same
pace as particles – photons propagate large distance to the absorp-
tion point without interaction while particle motion can change on
very small spatial scales. Propagation of photons must be calculated
separately, with larger spatial steps.

For modelling of electromagnetic cascades in NS magneto-
spheres I developed a general algorithm which calculates plasma
motion and photon propagation in different numerical pace. The
scheme of the algorithm is presented in Fig. 1, where the sequence
of operations performed at every time-step is shown.

The plasma dynamics is done with the standard PIC algorithm.
Using the current density known from the previous step I solve
Maxwell equations and get electric field at grid points. Then for
each particle I interpolate the electric field to the particle’s position
and get the electric force on the particle. Solving the equation of
motion I advance particle momenta and positions. Particle motion
through the cell boundary is counted as its contribution to the electric
current. The electric current for each cell boundary is computed
simultaneously with particle motion and is stored for the next time-
step.

Photon emission and pair production are calculated as follows. I
sample how many photons capable of producing electron–positron
pair each particle emits during the current time-step. For each emit-
ted photon, its energy is sampled from the spectral energy distri-
bution of the corresponding emission process. Then I sample the
distance the photon will travel until it is absorbed. Calculation of the
optical depth to pair creation is done with the space steps adjusted
according to the current value of the cross-section for photon ab-
sorption; most of the steps are much larger that the cell size. In this
way photon propagation is done in (appropriate) and much faster
numerical pace than particle advance. Photon’s energy, position and
time of absorption are stored in an array. At every time-step I iterate
over the photon array and pick up photons which are absorbed at
the current time-step. For each of the selected photons I inject an
electron and a positron at the point of photon absorption and delete
that photon from the array. Being injected at the same point freshly
created electron and positron do not contribute to the charge and
current densities at the time-step of injection.

If there are too many particles of a particular kind in the com-
putational domain, their number can be reduced by deleting some
randomly selected particles. The total statistical weight of the se-
lected particles is stored and then statistical weights of all remaining
particles of the same kind are increased in order to compensate for
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Figure 1. Code structure – sequence of operations performed at every time-step.

the deleted particles. Although this conserves the overall charge of
the system, the resulting charge distribution will be slightly differ-
ent from the one before particle deletion. To proceed with charge
conserving algorithm one needs to solve the Poisson equation in or-
der to bring the electric field in accordance with the altered charge
distribution. When the number of photons is reduced, the later step
is, of course, unnecessary.

3 O N E - D I M E N S I O NA L D I S C H A R G E
IN P U LSA R P OLAR CAP

As previously there were no truly self-consistent studies of electro-
magnetic cascades – allowing time-dependence and incorporating
all classes of relevant microscopic processes – I decided to address
first the simplest case in order to develop an intuition about physics
of pair plasma generation. It was not clear a priori what is the pattern
of plasma flow, and in order to develop an appropriate numerical
technique to model a realistic system with many microscopic pro-
cesses at play a ‘bare-bone’ model must be studied first.

3.1 Physical model

The Ruderman & Sutherland (1975) model for pair cascade in the
polar cap of pulsar is the simplest possible model for a pair cascade.
Ruderman and Sutherland considered the case when the NS angular
velocity is anti-parallel to its magnetic momentum – so that the GJ
charge density is positive – and assumed that the work function to
extract a positive ion from the surface of an NS is much larger than
the available electric potential. In this model there is no plasma
inflow from the surface of the NS and all plasma in the cascade
zone is produced by pair creation in a series of ‘discharges’. When
enough plasma is produced in the discharge zone, it screens the
accelerating electric field and, therefore, stops particle acceleration
and pair creation. Plasma flows into the magnetosphere and – as
there is no source of plasma than (now suppressed) pair creation –
the plasma density decreases. When there are not enough charged
particles to screen the accelerating electric field the pair formation
starts again.

Although there are hints (e.g. Medin & Lai 2007) that the work
function in the NS crust can be small enough – so that particles can
be extracted from the star – and cascade operates in the so-called
space-charge limited flow regime (Arons & Scharlemann 1979), I
think that studying of the Ruderman–Sutherland model is worth
the effort. As reasons for this I give the following points: (i) this
model is intrinsically non-stationary and should be a good test of

whether non-stationary cascade is indeed flexible enough to adjust
itself to any current density required by the magnetosphere; (ii)
being the simplest model it could be used as a testing ground for
the numerical technique; (iii) boundary conditions in this model
(no plasma inflow) are similar to that in the problem of electron–
positron pair plasma generation near the horizon of a black hole
(Beskin et al. 1992; Hirotani & Okamoto 1998), and, hence, from
the solution of the pulsar problem it would be possible to get some
hints to how to address the latter problem.

Ruderman & Sutherland (1975) estimate the height of the cascade
zone for young pulsars (their equation 22) as

hRS ∼ 5 × 103ρ
2/7
6 P 3/7B

−4/7
12 cm , (2)

where B12 is the pulsar magnetic field in units of 1012 G, ρ6 is the
radius of magnetic field line curvature normalized to 106 cm and P
is the pulsar period in seconds. For young pulsars, with the period
of the order of ∼0.1 s, hRS is less than the width of the polar cap

rpc � 1.45 × 104P −1/2 cm . (3)

Therefore, 1D approximation should work well for such cascades.
In the Ruderman–Sutherland model the charge density deviates
strongly from the GJ charge density what creates accelerating elec-
tric field comparable to the vacuum electric field. The general rela-
tivistic effects introduce corrections to the electric field of the order
of several per cent of the vacuum electric field (Beskin 1990; Mus-
limov & Tsygan 1990), and for this problem they can be ignored.

For young pulsars the dominant emission process in terms of
the number of pair-production capable photons is the curvature
radiation (e.g. Hibschman & Arons 2001a). In this paper, I am
primarily interested in dynamics of the discharge zone, the region
with the accelerating electric field. The size of that zone should be
of the order of few hRS, which is of the order of the mean free-path
of curvature photons. Synchrotron photons emitted by the injected
pairs are much less energetic than curvature photons and, therefore,
the mean-free path of synchrotron photons is much larger than hRS.
They are absorbed at large distances from the NS where plasma
density is expected to be very high and electric field is already
screened. Hence, the pairs produced by the synchrotron photons
do not influence the discharge dynamics, and synchrotron emission
can be ignored.

So, the minimal physical model for the Ruderman–Sutherland
cascade includes 1D electrodynamics, curvature radiation as the
photon emission process and pair creation in a strong magnetic
field as the source of electron–positron pairs.
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3.2 Main equations

In the superstrong magnetic field of pulsar charged particles are in
the first Landau level and move strictly along magnetic field lines.
The radius of curvature of magnetic field lines ρ is much larger than
the polar cap radius rpc; for distances comparable to the width of
the polar cap particle dynamics can be considered as a motion along
straight lines. The curvature of the field lines is essential for photon
emission and pair creation. The radius of curvature of magnetic field
lines enters in the expressions for curvature radiation and gamma-
ray absorption cross-sections as a parameter, which can depend on
particle position.

I assume that charged particles move along straight magnetic field
lines which are perpendicular to the NS surface. A coordinate axis
x is directed along the field lines, its origin is at the NS surface and
positive direction is towards the magnetosphere. In the 1D model
charged particles are represented by thin sheath with infinite extend
in the direction perpendicular to the x-axis. I normalize particle
momentum to mec – the normalized particle momentum p is its
4-velocity p = βγ , where β = v/c is particle velocity normalized
to the speed of light and γ = (1 − β2)−1/2 is the Lorentz factor. The
equation of motion for a particle i is

dxi

dt
= vi (4)

dpi

dt
= e

mec

q̃i

m̃i

E − Wrr, (5)

q̃i and m̃i are particle charge and mass in units of electron charge
e and mass me correspondingly. W rr is the term responsible for
radiation reaction. For curvature radiation it is given by

Wrr = 2e2

3mec

q̃2
i

m̃i

p4

ρ2
. (6)

For low-energy particles radiation reaction becomes very small and
for them W rr in equation (5) is ignored (see Section 3.3).

In 1D model the only changing component of electromagnetic
fields is the electric field component E parallel to the x-axis. The
system is essentially electrostatic and the electric field can be ob-
tained from the solution of the Poisson equation for the electric
potential φ

d2φ

dx2
= −4π(η − ηGJ) (7)

as E = −dφ/dx. Here η is the charge density and ηGJ is the GJ
charge density. In order to solve equation (7) one has to either spec-
ify the potential difference across the domain or set the electric
field to some fixed value at one end of the domain, either on the
NS surface or at the base of the magnetosphere; these boundary
conditions must be specified at every time-step. The main free pa-
rameter in the problem is the average current density which flows
through the cascade zone. Charge can accumulate on the NS sur-
face and particles can be sent back from the magnetosphere. Hence,
boundary conditions are different at every time-step – the potential
drop along the computation domain as well as the electric field at
the domain boundaries change with time. Boundary conditions are
related in some complicated way to the requirement of providing
a certain value for the average current density. However, if charge
conservation is taken into account, the electrostatic boundary value
problem can be transformed into an initial value problem, which
does not require boundary conditions. I do so in Appendix A, where

I derive the equation for the electric field1

dE(x, t)

dt
= −4π (j (x, t) − jm(t)) . (8)

Here j is the current density at point x at time t, and jm is the average
current which flows through the calculation domain, determined
by the twist of the magnetic field imposed by the global stress
balance of the magnetosphere. To solve this equation only an initial
configuration of the electric field in the domain E(x)|t=0 is necessary;
the boundary conditions are incorporated in jm, i.e. the electric
field at domain boundaries will adjust itself to provide the required
average current density jm.

The solution of equation (8) gives the correct electric field – the
one which satisfies the Maxwell equations (in the 1D case it is the
Gauss law) – if one starts from a configuration where E is obtained
as a solution of the Poisson equation and numerical algorithm con-
serves electric charge. In my simulations, at the very first time-step
I set some boundary conditions on the electric field (or the potential
drop in the domain) and some initial particle distribution; then I
compute the charge density η and solve the Poisson equation (7) for
that boundary conditions to get the initial distribution of the electric
field in the domain. At all subsequent time-steps for each point in
the numerical grid I compute the electric field from its value at the
previous time-step using equation (8); the current density j due to
particle motion is calculated using a change conserving algorithm.

Physically, in order for electric field to be zero in the polar cap
the charge density must be equal to the GJ charge density and the
current density equal to the jm required by the magnetosphere. The
GJ charge density enters in the Poisson equation which is solved at
the first time-step; because of charge conservation the system ‘keeps
memory’ of the GJ charge density at all subsequent time-steps. The
current density jm enters in the equation for the electric field. So,
the system tries to adjust to both these requirements.

Particles moving along curved magnetic field lines emit photons
via the curvature radiation mechanism. Spectral energy distribution
of curvature photons emitted by a particle with the Lorentz factor
γ is given by the standard formula (Jackson 1975)

∂Nph

∂t ∂ε
(ε) = 1√

3π

αf c

-λC

1

γ 2

∫ ∞

ε/ε
peak
CR

dξ K5/3(ξ ) , (9)

where ε is the photon energy normalized to mec2, αf is the fine
structure constant, -λC = �/mec = 3.86 × 10−11 cm is the reduced
Compton wavelength, K5/3 is the modified Bessel function of the
order of 5/3; ε

peak
CR = (3/2)-λC ρ−1γ 3 � 57.92 ρ−1

6 γ 3
6 is the peak en-

ergy of curvature photons, γ 6 ≡ γ /106. The integral in equation (9)
has asymptotic forms∫ ∞

y

dξ K5/3(ξ ) �
{

2.15y−2/3 − 1.81, if y � 1

1.25e−yy−1/2, if y 	 1
(10)

The total number of curvature photons with energies greater than
some εa emitted by the particle during time dt is

dNph(ε > εa) = dt
1√
3π

αfc

-λC

1

γ 2
F

(
ε

εa

)
(11)

where

F (ζ ) =
∫ ∞

ζ

dξ

∫ ∞

ξ

dx K5/3(x) . (12)

1 Levinson et al. (2005) used the same approach for the calculation of the
electric field. They did not elaborate on the physical meaning of jm, so I
decided to present a detailed derivation of equation (8).
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For small values of its argument F(ζ ) has the following asymptotic
form:

F (ζ ) � 1 + 0.346ζ − ζ 1/3(1.232 + 0.033ζ 2), ζ � 1 . (13)

Only very high-energy photons capable of producing an electron–
positron pair in the calculation domain are of relevance for the
considered problem and only those are tracked in the code (see
Section 3.3).

I assume that photons are emitted tangentially to the magnetic
field lines and then move along straight lines. The angle ψ between
the photon momentum and the magnetic field increases as the photon
propagates further from the emission point. In a simple model where
magnetic field lines have constant curvature the angle between the
photon momentum and the magnetic field is given by

ψ(x) = (x − xe)/ρ , (14)

where xe is the coordinate of the emission point. In the dipolar
magnetic field the expression for ψ(x) is slightly more complicated

ψ(x) � 3

4
θe

x − xe

x

√
1 + xe

RNS
, (15)

here θ e is the colatitude of the emission point (a free parameter in
the 1D model) and RNS is the NS radius. Both models were used in
the simulations. The cross-section of photon absorption is given by
(Erber 1966)

σBγ = 0.23
αf

-λC

B

Bq

sin ψ exp

(
− 8

3χ

)
, (16)

where χ = εB sin ψ/Bq � 2.27 × 10−2εB12ψ , and Bq =
m2

ec
3/e� � 4.41 × 1013 G is the critical magnetic field strength.

The cross-section grows exponentially as photon propagates further
from the emission point.

When the photon is absorbed I assume that its energy is equally
divided between newly created electron and positron. The perpen-
dicular component of particle’s momentum will be rapidly radiated
as synchrotron photons, which, as described before, are neglected.
Injected particle ends up having only the longitudinal component
of the momentum

pe± �
(

ε2 − 4

4 + ψ2
a ε2

)1/2

, (17)

where ψ a is the angle between the photon momentum and the
magnetic field at the absorption point.

3.3 Numerical implementation

In this section I describe normalization of physical quantities, intro-
duce several numerical parameters controlling the algorithms and
give their typical values in my simulations. I also give an overview of
main numerical algorithms used in the code; a detailed description
of the numerical code will be given elsewhere.

Distances are normalized to the radius of the pulsar polar cap,
x0 = rpc, given by equation (3). The electric potential is normalized
to the vacuum potential drop between the rotation axis and the edge
of the polar cap in the aligned rotator

�0 = �

c

Br2
pc

2
� 6.6 × 1012B12P

−2 V , (18)

where � is the pulsar angular velocity. The electric field is normal-
ized to

E0 = �0

x0
� 4.6 × 108B12P

−3/2 V cm−1 , (19)

and the charge density to the absolute value of the GJ charge density

η0 ≡ �B

2πc
= �0

πx2
0

. (20)

Each numerical particle is a macroparticle representing a (large)
number of real particles N0, either electrons or positrons. Each
numerical particle has a statistical weight wi = w̃iN0. When a
macroparticle emits a photon, the latter gets the particle’s statistical
weight (also see below the description of photon sampling); when
the photon is absorbed the injected electron and positron get the
photon’s statistical weight. An important numerical parameter is
N cell

GJ – the number of macroparticles with the normalized statistical
weight w̃i = 1 in a cell which create the GJ charge density

η0 = eN0N
cell
GJ . (21)

The parameter controlling the number of numerical particles in the
simulation is N cell

GJ ; N0 is computed at the start of the simulation
from equation (21). The difference in the number density between
particles of opposite signs of the order of N cell

GJ results in a large elec-
tric field; this number should be not very small, otherwise numerical
noise will strongly contaminate results. In my simulations values of
N cell

GJ � 5 provide acceptable level of numerical noise which allows
to recognize plasma oscillation excited in the pair plasma.

The calculation domain is divided in Mx equal numerical cells;
a typical value of Mx in my simulations is several thousands. I
use 1D version of the charge conservative algorithm proposed by
Villasenor & Buneman (1992) for scattering of charge and current
densities to the grid points and for interpolation of the electric field
to particle locations. Integration in time of equations (4), (5), (8)
is done with a leap-frog scheme with a uniform time-step �t. The
radiation reaction in equation (5) is taken into account only for
particles with momentum larger than a certain value pmin

rr .
For each particle if its momentum is larger than a certain value

pmin
rad I calculate the mean number of photons Nph with energies larger

than a certain εmin
em the particle emits during time �t according to

equation (11). If Nph is small, less than a certain Nmax
ph , I sample the

number of actually emitted photons from the uniform distribution
with the mean value equal to Nph. Then for each photon I sample
its energy from the distribution given by equation (12) using either
cutpoint or inverse transform methods (Fishman 1996). The values
of F(ζ ) in equation (12) are tabulated for 0.01 ≤ ζ ≤ 10 for use
in the cutpoint method; for smaller ζ inverse transform method is
used with the asymptotic formula F(ζ ) � 1 − 1.232ζ 1/3. If Nph >

Nmax
ph , the particle emits a fixed number of numerical photons – the

spectrum is divided in N bin
CR bins, the number of emitted numerical

photons is equal to N bin
CR ; each photon gets a statistical weight equal

to the product of the statistical weight of the emitting particle and
the number of photons emitted in the corresponding spectral energy
bin given by equation (9).

To calculate the position where the photon is absorbed I sample
the optical depth the photon should achieve before being absorbed;
then I integrate the cross-section (16) along photon’s trajectory until
the required optical depth is reached. The cross-section of photon
absorption in the polar cap grows exponentially with the distance
from the emission point, and most of the trajectory do not make
significant contribution to the optical depth. At first optical depth
along photon’s trajectory is calculated using rectangle methods with
large spatial steps (∼1/20–1/40 of the domain size) until the op-
tical depth on the next step would exceed the required value. This
integration method overestimates the optical depth; the trajectory
always continues beyond this intermediate stop point. I redo the
cross-section integration between the emission and the stop points
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using 15 points Gauss–Kronrod integrator that provides a very ac-
curate value for the optical depth at the stop point. Then, the optical
depth integration is proceeded with a smaller spatial step compa-
rable to the cell size. The number of cross-section evaluation in
this algorithm is, on average, by a factor of few tens smaller than a
cross-section integration with the step equal to the cell size would
require.

Values of the numerical parameters pmin
rr , pmin

rad , εmin
em , Nmax

ph , N bin
CR

are fixed at the start of the simulation. These values are chosen to
sample all pair creation capable photons and correctly account for
the radiation reaction on one side, and to minimize the computation
time of the other side; their particular values depend on physical
conditions: the pulsar period, the magnetic field strength and the
radius of curvature of magnetic field lines. The typical values I
used in the simulations: pmin

rr ∼ pmin
rad ∼ 105 − 106, εmin

em ∼ 2−40,
Nmax

ph ∼ N bin
CR ∼ 50.

The numerical code was developed from scratch and written in
C++ programming language. Its modular object-oriented structure
is designed to facilitate further extension to multi-dimension and
incorporation of additional physical processes. I tested the PIC part
of the code performing simulations of the following test problems:
oscillation of two test particles, two stream instability in both rela-
tivistic and non-relativistic regime, non-relativistic and relativistic
Child’s laws, dependence of plasma frequency on numerical res-
olution (Birdsall & Langdon 1985). I also tested that the code is
indeed change conservative up to machine precision. The Monte
Carlo part of the code was tested as follows. I verified that the
energy distribution of emitted photons agrees with the spectrum
of curvature radiation. For several fixed emission points, different
values of photon energy, magnetic field strength and radius of cur-
vature of magnetic field lines I compared the distribution of photon
absorption points produced by the Monte Carlo code with the cor-
responding theoretical distributions. I also checked that for a given
time interval the total energy of emitted photons is equal to the
particle radiation-reaction losses.

4 R E S U LT S O F N U M E R I C A L M O D E L L I N G

The numerical simulations have shown that in the Ruderman–
Sutherland model pair creation is quasi-periodic and self-sustained.
I performed simulations for different initial particle distributions,
initial electric fields, strengths of the magnetic field, radii of cur-
vature of magnetic field lines and pulsar periods. Independent of
the initial configuration for non-zero jm pair-creation process be-
gins some time after the start of simulations. How and how much
plasma is formed in this initial burst depend on the specific setup.
The plasma generation stops after enough plasma is produced to
screen the electric field. After plasma generated in this burst of pair
formation leaves the domain (in a couple of domain flyby times),
the behaviour of the cascade for given magnetic field, pulsar period
and the mean current jm is the same, independent of the initial con-
figuration. All subsequent bursts of pair formation do not depend
on the initial setup – the system seems to forget the initial condi-
tions. After that initial burst of pair creation the cascade zone always
settles down to a quasi-periodic behaviour. For a given jm cascade
behaviour is qualitatively similar for all other physical parameters
admitting pair creation.

I describe here main properties of the Ruderman–Sutherland cas-
cade using as an example a pulsar with period P = 0.2 s, magnetic
field B = 1012 G and the radius of curvature of magnetic field lines
ρ = 106 cm. The radius of curvature of magnetic field lines compa-
rable to the NS radius implies that there is a non-dipolar component

of the magnetic field in the polar cap region. I performed simulations
for pure dipole magnetic field with ρ ∼ 108 cm too. Qualitatively
results do not depend on the radius of curvature, but for smaller ρ

calculations with the same numerical resolution can be done faster
because the size of the gap with accelerating electric field is smaller.
On the other hand, the adoption of this value for ρ simplifies com-
parison with the original Ruderman & Sutherland (1975) model,
where the same value for ρ was used.

The polar cap radius for such pulsar is rpc = 3.24 × 104 cm
(equation 3). The heights of the gap should be (see equation 2)

hRS,1 � 2.5 × 103 cm � 0.077rpc , (22)

and the potential drop in the gap is

�VRS,1 = 2πηGJh
2
RS,1 � 1.98 × 1012 V = 0.012�0 , (23)

so the maximum Lorentz factor of electrons and positrons is

γ max
RS,1 = e�VRS,1

mec2
� 3.87 × 106 . (24)

The angular velocity of NS rotation is anti-parallel to the magnetic
moment of the star and the GJ change density is positive. The length
of the computation domain for the simulations described in this
section is L = 0.3rpc � 9.72 × 103 cm. Numerical grid has Mx =
5000 points, so that the cell size is �x � 1.94 cm. The number of
numerical particles in cell providing the GJ charge density N cell

GJ =
10. Other numerical parameters are pmin

rr = pmin
rad = 5 × 105, εmin

em =
20, Nmax

ph = 50, N bin
CR = 80.

I describe properties of cascade with physical parameters given
above for three different current densities: jm = jGJ, jm = 0.5jGJ and
jm = 1.5jGJ. First I describe the main properties of cascade with
jm = jGJ. Pair formation dynamics for different current densities
is qualitatively similar. Later in this section I will highlight the
differences in cascade properties for jm = 0.5jGJ and jm = 1.5jGJ.

4.1 Pattern of plasma flow

In this subsection, I describe the pattern of plasma flow for a typ-
ical cycle of pair formation in cascade with jm = jGJ. Cascade
development is illustrated by a series of snapshots at several time
moments during a cycle of pair formation taken from a long simula-
tion where several such cycles were observed.2 In Fig. 2, I plot the
change density at equally spaced time interval during the discharge
cycle. In the upper panel of that figure, I present an overview of
the entire cycle, in the lower panel I plot snapshots of the change
density distribution at smaller time intervals for the most interesting
part of the discharge – formation of a new plasma blob. In Figs 3
and 4, more detailed information about physical conditions in the
discharge zone is shown: the number densities of electrons and
positrons η±, the accelerating electric field E, phase portraits (p − x
diagrams) of electrons, positrons and pair producing photons. In the
phase portraits particles with positive values of four-momentum p
are those which move from the NS, particles with negative p move
towards the NS. The time t in these figures is normalized to the
flyby time of the computational domain – the time a relativistic par-
ticle needs to cross the domain L/c. The time is counted from the
start of a particular simulation, so its absolute value has no physical

2 In a previous short publication (Timokhin 2009) I presented plots similar
to Figs 2 and 4 of this paper for a different cycle of the same simulation.
Comparing these plots one can see that different bursts of pair formation are
indeed very similar.
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Figure 2. Snapshots of charge density distribution in the calculation domain for cascade with jm = jGJ. Charge density η as a function of distance x from the
NS is plotted at equally separated moments of time; η is normalized to the GJ change density ηGJ. The time t shown in small square boxes is normalized to the
flyby time of the computation domain and is counted from the start of the simulation. The presented cycle is taken from the middle of a long simulation. Top:
the whole cycle of cascade development. Bottom: snapshots for time interval marked by the grey area in the top panel; these snapshots illustrate formation and
propagation of plasma blob in more detail.

meaning – only time intervals between the shots have physical
meaning.

Each pair creation cycle could be conveniently divided into three
phases: (i) vacuum gap formation (timeshots for t = 6.033–6.633 in
Fig. 2), (ii) formation and propagation of a plasma blob (t = 6.633–
7.833) and (iii) relaxation (t = 7.833–8.833). Each burst of pair

formation generates dense electron–positron plasma which screens
the electric field. Particles must leave the domain in order to provide
the required current density. When plasma leaves the polar cap a
gap with almost no particles inside is formed; the vacuum electric
field in the gap is no longer screened [phase (i)]. The few particles in
the gap are accelerated and emit high-energy gamma-photons, and
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Figure 3. Ignition of pair formation in cascade with jm = jGJ. Several physical quantities are shown as functions of the distance x from the NS. Plots in each
column (for the same time t) are aligned – they share the same values of x. Snapshots are take at time moments of the first three marked snapshots in the
bottom panel of Fig. 2. The following quantities are plotted: first row: η± – charge density of electrons (negative values, blue line) and positrons (positive
values, red line); η± is normalized to the GJ charge density ηGJ. Second row: the total charge density η normalized to the GJ charge density ηGJ. Third row:
accelerating electric field E normalized to the vacuum electric field E0. Fourth row: phase-space portrait of positrons (horizontal axis – positron position x,
vertical axis – positron momentum p+ normalized to mec). Fifth row: phase-space portrait of electrons (horizontal axis – electron position x, vertical axis –
electron momentum p− normalized to mec). Sixth row: phase-space portrait of pair-producing photons (horizontal axis – photon position x, vertical axis –
photon momentum pγ normalized to mec).

the process of plasma creation starts again. The electron–positron
plasma is produced non-uniformly; it forms a blob3 of relativistic
plasma where large amplitude plasma oscillations are excited [phase
(ii)]; the blob is visible in Fig. 2 as a packet of large amplitude charge

3 Actually, I am computing plasma sheets in 1D, but in 2D and 3D these
would be plasma ‘blobs’, so I use the latter term throughout the paper.

density oscillations. The blob moves into the magnetosphere leaving
a tail of moderately relativistic plasma behind. When the blob leaves
the computational domain, the remaining plasma still screens the
vacuum electric field till the plasma density drops below nGJ and pair
formation starts again [phase (iii)]. Below I describe these processes
in more details.

A typical cycle starts with the formation of a vacuum gap above
the NS surface (timeshots at t = 6.033–6.650 in Figs 2 and 3). The
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Figure 4. Screening of the electric field in cascade with jm = jGJ. Snapshots are take at time moments of the last four marked snapshots in the bottom panel
of Fig. 2. The same quantities are plotted as in Fig. 3.

gap forms because plasma leaves the domain in order to provide
the required current density jm. The GJ charge density is posi-
tive, and when the electric field is completely screened there are
more positrons than electrons. The current density is positive, and
positrons, on average, must flow towards the magnetosphere (to the
right). As there is no plasma inflow through the domain bound-
aries, the gap forms when there are not enough charged particles
to provide the required current and change densities in the whole
domain; above the gap the plasma still sustains the required current
and change densities. Positrons flow into the magnetosphere, so the
gap forms at the NS surface.

Pair creation starts close to the NS and is ignited by gamma-
rays emitted by electrons flowing towards the NS. These primary

electrons have been created in the previous burst of pair formation;
they leak from the tail of the plasma blob formed in the previous
cycle and enters the gap from above. These electrons are visible as a
thin line of particles with negative momenta p− in the electron phase-
space portraits (the fifth row in Fig. 3). Pair-production capable
gamma-photons emitted by these electrons have negative momenta
and are visible in the photon p − x diagrams as scattered dots with
negative pγ at t = 6.5, 6.6. These photons are eventually absorbed
and create electron–positron pairs, which are visible as scattered
dots at the left in the electron and positron p − x diagrams at t = 6.6–
6.7. These newly created electrons and positrons are accelerated by
the strong electric field of the gap (see timeshot at t = 6.6); when they
have been accelerated up to Lorentz factors of the order of several
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106 they start to emit pair-production capable photons. At t = 6.700
there are already gamma-photons with positive momenta; they have
been emitted by the secondary positrons accelerated in the strong
vacuum electric field. At these early stages of pair discharge the
density of the newly created plasma is still very low (see plots for η±,
the first row in Fig. 3), and the electric field is not influenced by the
injected plasma (the third row in Fig. 3). All electrons and positrons
are accelerated up to high Lorentz factors and start emitting pair-
production capable gamma-photons very soon.

The secondary electrons and positrons are accelerated in opposite
directions, and plasma start being polarized (see distribution of the
charge density at t = 6.8, 6.85, 6.9 in Fig. 2). The polarization
of plasma creates an electric field opposite to the vacuum field,
and the effective accelerating electric field decreases. When the
particle number density becomes comparable to the GJ density nGJ

the accelerating electric field starts being screened by plasma. How
the electric field is screened is shown as a series of snapshots in
Fig. 4. The screening naturally starts in the place where plasma
density is maximal. When more and more plasma is injected the
region of screened electric field broadens till it eventually extends
up to the NS surface.

The particles which produce most of the pair creating photons
are the secondary positrons which have been accelerated at the time
when plasma density was small and electric field was strong. Sec-
ondary electrons have been accelerated up to very high energies
too, but they have been moving towards the NS – they slammed
into the NS surface and do not contribute to pair creation at later
times. The high-energy positrons move into the magnetosphere
emitting gamma-rays which turn into electron–positron pairs. These
positrons practically comove with the gamma-rays. Freshly created
pairs are relativistic and have momenta directed from the NS; most
of them will remain relativistic and will move into the magneto-
sphere. So, the pair plasma forms a blob with constantly increasing
particle density (see the first row in Fig. 4).

Photons cannot go ahead of relativistic particles at the front edge
of the blob, and pairs are injected only inside the blob. As the plasma
blob moves into the magnetosphere so does the vacuum gap limited
from below by the front edge of the blob. Ahead of the blob there
is practically vacuum with strong electric field, as there are only
electrons leaking from the tail of the previous blob and their number
density is very low. The electric field inside the blob is screened by
the plasma. At the front of the blob a sheath of positive charge
is formed which screens the vacuum electric field. This sheath is
visible as a large spike in the charge density distribution at timeshots
t = 7.05–7.433. Inside the sheath the electric field goes from the
vacuum value to its very low value in the blob. Pairs injected in this
sheath by conversion of gamma-photons emitted by the particles
which are already in the sheath are accelerated by that electric field
and start emitting gamma-rays too. As more and more pairs are
ejected there the width of the sheath decreases. However, the number
of particles in the sheath is small (see the plot for η± in Fig. 4 at
t = 7.25). Pairs injected in other parts of the blob are not accelerated
because the electric field there is screened. Hence, subsequent pair
formation is driven mostly by particles accelerated at early stages of
the discharge, when the electric field was strong. As these particles
are emitting gamma-rays and they are not accelerated anymore,
their kinetic energy decreases. This can be seen in the positron p −
x diagrams in Fig. 4; the spike of high-energy particles at the blob’s
front is due to particle acceleration in the charge sheath.

I observe thermalization of freshly created electrons and positrons
in the simulations. Low-energy particles are present starting from
very early stages of blob formation. Some of the low-energy par-

ticles are reversed back. While the bulk of the plasma moves with
relativistic speed into the magnetosphere some particles are left
behind forming a ‘tail’ of the blob which has much lower parti-
cle number density than the blob itself. Although the fraction of
particles left behind is small, their number is enough to screen the
vacuum electric field for some time, preventing immediate forma-
tion of a new vacuum gap after the blob detaches from the NS.

While the general structure of the flow is evident from the per-
formed simulations, some questions remain unanswered. The most
important among them is about the time between discharges. It
depends on the rate of plasma leakage from the blob – the more par-
ticles leak out, the later the next gap forms. Due to continuous pair
injection plasma density in the blow increases enormously and at
some time the numerical scheme stops resolving the Debye length
of the plasma, and results start depending on the numerical resolu-
tion. Because of this the blob cannot be followed for time interval
long enough (and distances large enough) to get the repetition rate
of the cascade. In the presented simulations the size of the simula-
tion zone is set such that the blob leaves calculation domain before
the numerical scheme fails to model it correctly. When the blob
leaves the calculation domain particles are still leaking from it into
the tail. When the blob is no longer in the computational domain,
particle supply to the tail is stopped and the time interval during
which plasma density in the domain drops to the GJ density – and a
new gap begins to form – is substantially smaller in my simulations
than it would be in reality. Duration of the relaxation phase in the
simulations (timeshots t = 7.833–8.833) is strongly influenced by
the numerical setup.

However, I believe that the qualitative behaviour of the plasma
during this phase is represented correctly, as there are no physical
processes in the blob tail except the particle supply from the blob
that the code fails to model when the blob is no longer in the
computational domain. There is no particle acceleration in the tail
and pair creation is only due to electrons which leak from the
previous blob and are accelerated towards the NS in the travelling
vacuum gap. The number of these electrons is negligible compared
to the number of pair-producing positrons in the blob. The fraction
of particles leaking from the blob when it is still inside the domain
is also small, of the order of a few per cent. This is enough to
screen the vacuum electric field, but the energy carried by those
particles is negligible compared to the energy carried by particles
in the blob (see Section 4.4). Hence, the only cascade characteristic
substantially influenced by the rate at which particles leak from the
blob is the repetition rate of pair creation bursts. Already from these
simulations, it is clear that the time between discharges is longer
than the vacuum gap crossing time hRS/c. This introduces a new
time-scale into the Ruderman–Sutherland model.

Qualitatively the plasma flow after the discharge should be as
follows. The tail consists of particles leaked from the blob; those
are mildly relativistic particles, some of them are trapped in plasma
oscillations and, on average, the tail moves with a subrelativistic
velocity. The vacuum gap is limited from above by the tail of the
previous blob: the plasma must move in order to support the current
density jm; when the plasma density drops to values comparable
to the GJ density, the plasma cannot support the required current
density and the GJ charge density at the same time, a gap appears,
and so the tail ends in a vacuum gap. Among the trapped particles in
the tail there are both electrons and positrons which move towards
the NS. The electrons at the tail’s end enter the gap and get acceler-
ated towards the NS – they will be the primary particles in the next
burst of pair formation. The positrons entering the gap are reversed
and are sent into the magnetosphere. The upper boundary of the
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vacuum gap – the tail’s end – moves with a subrelativistic veloc-
ity, the front of the blob is formed by ultra-relativistic positrons
and moves relativistically; therefore, the gap shrinks when the blob
moves into the magnetosphere. The velocity of the blob’s tail vtail

is several per cent less than the speed of light, vtail ∼ 0.95–0.99 c.
Eventually the front of the new blob catches the tail of the previous
blob; the disappearance of the gap is directly visible in the case
of jm = 0.5jGJ (see Section 4.5). Therefore, the magnetosphere in
the open field line zone will be filled with plasma everywhere and
starting at some distance from the polar cap there will be no gaps
in plasma spacial distribution.

4.2 Superluminal plasma wave

When plasma starts being injected into a region with strong electric
field it is polarized and starts screening the electric field. During the
process of screening of the vacuum electric field large-amplitude
oscillations are excited in the injected pair plasma; these oscillations
are visible in timeshots starting at t = 6.85 and until the blob leaves

the domain. Screening of the electric field starts in the middle of the
blob and spreads to its edges. This spreading occurs in the form of
an electrostatic wave. The propagation of the wave can be seen in
Fig. 5 where I plot snapshots for the electric field, the charge density
and the particle number density for the same spatial domain where
the blob is being formed for 6 moments of time; I plot also three
vertical lines which mark fiducial positions moving with the speed of
light towards the magnetosphere. One can clearly see that the phase
velocity of the wave is greater than the speed of light; also note that
the wave propagating towards the NS is superluminal too. In the
process of electric field screening less and less charge separation
would be necessary to kill the electric field. Apparently this is the
reason why the wavelength of plasma oscillations decreases. At the
time of wave formation the particle number density is already very
high; there are more than ∼100 numerical particles per cell. The
Debye length of the plasma – calculated as

λD ∼ c

ωp

= c

(
4πe2

me

∫
n(γ )

γ 3
dγ

)−1/2

, (25)

Figure 5. Formation and propagation of superluminal electrostatic wave in the forming plasma blob for cascade with jm = jGJ. There are six snapshots for
the electric field E, the total change density η and the charge density of electrons (negative values, blue line) and positrons (positive values, red line) η±. All
quantities are plotted as functions of distance x for the part of the calculation domain where the blob is forming. Snapshots are taken at equally separated time
intervals. Plots in each column are aligned and share the same values of x. The same normalizations for physical quantities are used as in Fig. 3. The three thin
red vertical lines in each plot mark fiducial points moving with the speed of light towards the magnetosphere. The wave is superluminal; its maxima move
faster than these lines.
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Figure 6. Particle momentum distribution for plasma in the blob at three moments of time for cascade with jm = jGJ. Positron distributions are shown by
solid lines, electron distributions by dashed lines and the distribution of pair producing photons by dotted lines. Plots in the top row show distributions for
particles moving towards the magnetosphere (p > 0), and plots in the bottom row show distributions for particles moving towards the NS (p < 0). Each column
corresponds to the same moment of time shown above the plots. Plots in each columns are aligned and share the same values of |p|. The following blob sizes
were assumed: x ∈ [0, 0.135] for t = 6.95, x ∈ [0.05, 0.18] for t = 7.1 and x ∈ [0.1, 0.225] for t = 7.25.

where n(γ ) is the number density of particles with the Lorentz
factor γ – is resolved; at the time the snapshots shown in Fig. 5 are
made λD is several tens of times larger than the cell size. Hence,
these oscillations are not numerical artefacts. The electric field in
the wave is too weak to accelerate particles up to energies when
they can emit pair-production capable photons. Particle injection
rate is set by very high-energy particles accelerated at earlier time
and there is no back reaction of the wave on the particle production
rate.

Decreasing of the wavelength eventually ends when the wave-
length becomes equal to the cell size. From that moment the code
cannot correctly follow propagation of the wave. In timeshots for
t > 7.25 the wavelength is not resolved anymore. Oscillations per-
sist, but because the wavelength is equal to the cell size, parameters
of the wave depend on the numerical resolution and so tell us lit-
tle about how the wave would propagate at that time in a real
cascade. However, based on the information obtained at the early
stages of wave evolution (for t < 7.25) – when results of numerical
modelling should be reliable – I would like to make the following
remarks. Being superluminal this wave is not damped via Landau
damping. I may speculate that this wave could stay superluminal,
with its phase speed approaching the speed of light from above,
for a time long enough that it can travel into the magnetosphere
practically undamped. Although in my 1D simulations the wave is
electrostatic, in reality it would be electromagnetic. It could escape
the magnetosphere and be observed as coherent pulsar emission,
or/and it can excite another electromagnetic wave(s) which escape
the magnetosphere.

4.3 Particle momentum redistribution and current adjustment

Starting from very early stages of blob formation the injected pairs
start being thermalized. I use the term ‘thermalization’ here rather

loosely, meaning that in the particle momentum distribution there is
a strong broad component which peaks at some momentum value;
it extends up to very low energies decreasing like a power law, and
decreases strongly after the peak. Although I did not perform a for-
mal fitting procedure for particle momentum distribution,4 the low-
energy tail of the ‘thermal’ component follows the 1D Maxwell–
Juttner distribution ∂n/∂p ∼ const for small p quite good. In Fig. 6,
I plot particle momentum distribution p (∂n/∂p) for three different
moments of time. In the upper panel I plot the momentum distribu-
tion of particles moving towards the magnetosphere, p is positive;
in the lower panel – the momentum distribution of particles moving
towards the NS, p is negative. These distributions are for particles
in the blob – they are averages over x ∈ [0, 0.135] for t = 6.95, x ∈
[0.05, 0.18] for t = 7.1 and x ∈ [0.1, 0.225] for t = 7.25 (cf. plots
for the particle number density in Fig. 4). There are low-energy
particles and there are particles with both direction of motion in
the blob. Essentially the pair plasma becomes four-component: (i)
positrons moving into the magnetosphere, (ii) positrons moving
toward the NS, (ii) electrons moving into the magnetosphere, (iv)
electrons moving towards the NS. Such four-component plasma eas-
ily adjusts locally to both requirements of providing the GJ charge
density and the current density jm.

At initial phases of blob formation at least one of the processes
leading to plasma thermalization is trapping of particles in the elec-
tric field of the plasma wave. In Fig. 7 trajectories for three of
such trapped pairs are shown. In that figure, phase trajectories of
pair-producing photons are plotted by dotted lines, marked as γ 1,2,3.

4 To get an accurate momentum distribution, it is necessary to collect enough
numerical particles. This leads to averaging over a macroscopic volume with
different physical conditions, and results of such fitting would be ambiguous
anyway.
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Figure 7. Trajectories of three pairs and their parent photons in the phase
space (distance x is along the horizontal axis, momentum p is along the
vertical axis) for cascade with jm = jGJ. Trajectories of pair creating photons
are shown by dotted lines and marked as γ 1,2,3. Trajectories of positrons
are shown by solid lines and marked as e+

1,2,3, trajectories of electrons are

shown by dashed lines and marked as e−
1,2,3. Marks are located at the ends

of corresponding particle trajectories. All trajectories end at t = 7.1.

When photon is absorbed an electron and a positron are injected.5

Electron trajectories are shown by dashed lines, positron trajecto-
ries by the solid lines; trajectories’ final points are marked as e−

1,2,3

and e+
1,2,3 correspondingly. Particle trajectories end at t = 7.1; at

that and earlier time both the Debye length and the wavelength of
the wave are well resolved. They are tens of times larger than the
cell size, and there are many particles per cell; particle trajectories
are well resolved too. Hence, the thermalization is not a numerical
artefact. Thermalization of freshly injected pairs proceeds also at
later stages of cascade development; however, as the code does not
resolve the plasma wave anymore, it is not possible to disentangle
the influence of the wave on the thermalization process at this time.

From the current simulations, it is not clear what is the fate of the
plasma wave in the blob. If it exists for a long time, particle ther-
malization in these oscillations could continue. On the other hand,
deviation of the current density from jm results in the appearance
of an electric field even if the charge density is equal to the local
GJ charge density. The presence of that electric field in a plasma
with broad momentum distribution might result in some instability
which could facilitate pair thermalization – at least I see plasma
thermalization during the relaxation phase when there is no large
amplitude plasma wave and plasma leaves the domain adjusting to
the required current density by redistribution of particle momenta.
This topic, however, needs additional investigation and will be ad-
dressed in future publications.

To reverse the direction of motion of low-energy particles a weak
electric field would be sufficient. For charge density to be equal
to the local GJ charge density the number of positrons should be
greater than the number of electrons by nGJ. In order to provide
current density less than jGJ some positrons should move towards
the NS. If there is a population of low-energy trapped positrons, a
weak fluctuating field can ensure that some trapped positrons on
average will be moving towards the NS. A similar process can
provide a current density larger than jGJ and still keep the change
density equal to the GJ charge density. The adjustment of the current
density can proceed in the cascade zone locally, without inflow of

5 Note that the initial kinetic energy of injected pairs is much less than the
energy of the pair producing photons; this is easy to see from equation (17).
The rest of the energy goes into synchrotron radiation; that energy is carried
by many photons with energies much less than that of the primary photon.

Figure 8. Currents through the domain boundaries for cascade with jm =
jGJ as functions of time for three consecutive bursts of pair formation.
The current flowing into the magnetosphere is shown by the solid line.
The current flowing into the NS is shown by the dashed line (note that
the direction for this current is opposite to the current direction assumed
in the rest of the paper, so it should be on average negative). Currents are
normalized to the GJ current jGJ. The currents are averaged over 10 time-
steps.

charged particles from the magnetosphere [the latter mechanism
of current adjustment has been discussed in Lyubarskij (1992) and
Timokhin (2006)].

In Fig. 8 I plot electric currents through the lower domain bound-
ary towards the NS surface (dashed line; this current should be neg-
ative) and through the upper end of the calculation domain (solid
line; this current should be positive) as functions of time. The re-
quired current density jm is achieved on average, at each moment
of time the current density deviates from jm. Fluctuations are the
strongest when particles from the burst of pair formation hit the NS
surface, and when the blob reaches the outer boundary. In all cases
the relative deviation of the mean over the cycle current density
from jm is less than ∼10−3.

4.4 Cascade energetics

The height of the gap is nearly two times larger than the estimate
given by equation (22). The reason for this is that the upper boundary
of the vacuum gap – the end of the blob tail – is moving into the
magnetosphere while the electrons which ignite the cascade are
moving towards the NS. When these electrons arrive at the point
where they emit first pair-production capable photons, the gap’s
upper boundary has moved some distance into the magnetosphere
and the gap size is larger.

The electric field in the gap linearly increases towards the NS
and the first secondary particles are injected into the region with
very strong electric field. A substantial amount of particles need
to be generated before the vacuum electric field is screened. In the
meanwhile the vacuum gap is still growing and freshly injected par-
ticles are accelerated in a very strong electric field. In the considered
case a noticeable number of particles reach the radiation-reaction
limited Lorentz factor ∼1.4 × 107 (see snapshots at t = 6.8, 6.95
in Fig. 4). This energy is nearly four times higher than γ max

RS,1 given
by equation (24). When the electric field is screened these particles
start losing their energy quickly and then for the most of the pair-
producing positrons the Lorentz factor does not exceed γ L ∼ 8 ×
106 (see snapshots at t = 7.1, 7.25 in Fig. 4). γ L is the Lorentz factor
of a relativistic electron/positron which lose substantial amount of
its kinetic energy due to curvature radiation while moving a distance
comparable to the length of the computation domain: γ L/δt ∼ W rr;
δt = L/c and W rr is the radiation-reaction term in the equation of
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Figure 9. Energy fluxes through the domain boundaries for cascade with
jm = jGJ as functions of time for three consecutive bursts of pair formation.
The flux towards the magnetosphere is shown by the solid line; the flux
towards the NS is shown by the dashed line. Fluxes are normalized to
mec2 nGJc and are averaged over 10 time-steps.

motion (5); it is given by equation (6). In terms of the problem’s
parameters

γL ∼ 5.6 × 104ρ
2/3
6

(
L

c

)−1/3

∼ 8 × 106 ; (26)

it is still nearly two times larger than γ max
RS,1 given by equation (24).

The particle energy distribution at high energies is quite flat (see
Fig. 6). So, pair-producing particles are more energetic than it is ex-
pected from simple estimates. Because of these the total number of
pairs generated by a single burst of pair formation should be larger
than that assumed in ‘standard’ Ruderman–Sutherland model. In
order to get the final pair multiplicity detailed full cascade simula-
tions are necessary, which will be the subject of a separate research.
The total number of high-energy particles with γ > 5 × 105 in a
blob is ∼0.7 nGJrpc per cm2 of the blob perpendicular cross-section.

In Fig. 9 I show energy fluxes trough the lower and upper bound-
aries of the calculation domain as functions of time. The energy
flux hitting the NS surface is shown by the dashed line; the energy
flux going into the magnetosphere – by the solid line. The fluxes
are normalized to mec2 nGJc; they are computed by summing ki-
netic energies of all particles leaving the domain at every time-step.
These functions have spikes when secondary particles accelerated
at the early stage of blob formation pass trough the correspond-
ing boundaries. The energy carried by particles in the blob tail is
negligible (intervals between the spikes) and so the energy is de-
posited only during bursts of pair formation. The energy flux into
the magnetosphere is larger because most of the secondary electrons
slam into the NS surface before they achieve the maximum possible
energy while secondary positrons can gain the maximum energy
as they fly away from the surface. The mean energy flux going
towards the NS averaged over the duration of the spike, e.g. over
t ∈ [6.6, 8] in Fig. 9, is ∼4 × 106mec2 nGJc; the flux going into the
magnetosphere averaged over the same time is ∼8 × 106mec2 nGJc.
If the time between two successive discharges is (rpc/c)f (i.e. the
time between discharges is f times larger than polar cap flyby time)
the average energy flux going into heating of the NS is ∼1.5 ×
1022f −1 erg s−1 cm2; this would result in the polar cap temperature
Tpc ∼ 4 × 106f −1/4 K, if the heat conductivity is neglected. The
flux going into the magnetosphere is ∼3 × 1022f −1 erg s−1 cm2.
Obviously, when the time between successive bursts of pair forma-
tion is large, the overall heating of the NS surface is significantly
reduced.

4.5 Cascades with jm = 0.5, 1.5 jGJ

When the current density in the cascade zone is different from the
GJ current density plasma flow is qualitatively similar to the case
jm = jGJ described above. In Figs 10 and 11, I show snapshots of
change density distribution and detailed characteristics of cascade
with jm = 0.5jGJ; in Figs 12 and 13 – the same plots for cascade
with jm = 1.5jGJ. The sizes of computational domains are the same
as in the case of jm = jGJ, so the time t in these plots, normalized
to the flyby time, is measured in the same units. The time intervals
between individual plots in Figs 10 and 12 are the same as in Fig. 2
discussed before. Note, however, that snapshots in Figs 4, 11 and 13
are taken at different phases of the pair formation cycle. In all cases
discharges repeat quasi-periodically and creation of pair plasma
goes through the same three phases: vacuum gap formation (t =
5.8–7 for jm = 0.5jGJ; t = 5.483–6.083 for jm = 1.5jGJ), formation
and propagation of the plasma blob (t = 7–8.2 for jm = 0.5jGJ; t =
6.083–7.283 for jm = 1.5jGJ) and relaxation (t = 8.2–8.6 for jm =
0.5jGJ; t = 7.283–8.283 for jm = 1.5jGJ). The structure of the plasma
blob is similar – there is a charged sheath screening plasma in the
blob from the large electric field in the vacuum gap, and there are
large amplitude plasma oscillations in the blob. The superluminal
plasma waves are also present.

Cascade parameters for the case jm = 0.5jGJ differ from those for
the case jm = jGJ as follows. The size of the plasma blob is larger.
The velocity of the previous blob’s tail is smaller, vtail ∼ 0.44c,
and the vacuum gap shrinks faster – one can see its disappearance
in timeshots at t = 7.017–7.517 (Figs 10 and 11). When the gap
closes, the charge sheath at the blob front edge disappears and
there is no additional particle acceleration there – in Fig. 10 at t =
7.467 the sheath is still present, at t = 7.567 it disappears. The
maximum particle energy is smaller – particles do not reach the
radiation-reaction limited energy – but their maximum energy after
the electric field is screened is the same γ L given by equation (26).
The plasma density in the blob is nearly four times smaller. The total
number of high-energy particles with γ > 5 × 105 in the blob is
∼0.22 nGJrpc per cm2 of the blob perpendicular cross-section, which
is ∼3.5 times smaller than in the case jm = jGJ. The energy flux
towards the NS is, as expected, smaller, 5.8 × 1021f −1 erg s−1 cm2,
and the estimated temperature of the polar cap is lower, Tpc ∼ 3.2 ×
106f −1/4 K.

Cascade parameters for the case jm = 1.5jGJ differ from those
for the case jm = jGJ as follows. The size of the plasma blob is
smaller. The velocity of the previous blob’s tail is vtail ∼ 0.82c; it
is smaller than that in the case of jm = jGJ, but it is significantly
larger than vtail for the case jm = 0.5jGJ. Although the gap shrinks
faster it still leaves the domain. First-generation secondary particles
reach the radiation-reaction limited energy and then slow down to
the Lorentz factors � γL. The plasma density in the blob is slightly
higher. The total number of high-energy particles with γ > 5 ×
105 in the blob is ∼0.6 nGJrpc per cm2 of the blob perpendicular
cross-section, which is slightly less than that value for jm = jGJ

cascade. The energy flux towards the NS is slightly lower, ∼1.3 ×
1022f −1 erg s−1 cm2, and the estimated temperature of the polar cap
Tpc ∼ 3.9 × 106f −1/4 K.

These differences are ultimately related to the speed at which
the tail of the previous blob leaves the domain and number of elec-
trons leaking from it. The cascade energetics and the ultimate pair
multiplicity depend on the number of the first-generation secondary
positrons, their maximum energy and for how long these particles
are sustained at this energy. The first-generation secondary particles
are accelerated up to very high energies – they can be accelerated
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Figure 10. Snapshots of charge density distribution in the calculation domain for cascade with jm = 0.5jGJ. The same notations are used as in Fig. 2.

up to the radiation-reaction limited energy – and are sustained at
this energy until enough plasma is produced to screen the electric
field in the blob. The rate of the first-generation secondary positrons
production depends on how many electrons leak from the tail of the
previous blob, and the maximum energy of these positrons depends
on the electric field where they are injected – the faster the gap grow
the larger the electric field.

In the case jm = jGJ redistribution of particle momenta is not
necessary for the adjustment of the current density – bulk motion
of the tail towards the magnetosphere would provide the required

current density because the charge density is already ηGJ; so in this
case the average speed of the tail is the largest. The gap grows
fast, and the first generation of secondary particles is created in
a region with very strong electric field. When the current density
jm differs from the GJ current density, redistribution of particle
momenta is required to sustain jm by keeping at the same time
the charge density equal to the GJ charge density. For jm > jGJ

electrons must be sent back to increase the current, for jm < jGJ

some positrons must be reversed to decrease the current. The plasma
as whole moves into the magnetosphere; low-energy particles are
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Figure 11. Screening of the electric field in cascade with jm = 0.5jGJ. Snapshots are take at the same time moments as the marked snapshots in the bottom
panel of Fig. 10. The same quantities are plotted as in Fig. 3.

trapped in small amplitude plasma oscillations and are dragged
with the bulk of the plasma. The presence of a weak electric field
would be sufficient to ensure that the required number of particles
on average moves towards the NS. Such particle reversal results
in slower motion of the tail. When the gap upper boundary moves
slowly, the first generation of secondary particles is injected in a
weaker electric field, and the overall energetics of cascade is lower.
On the other hand, the larger the current density the larger the
number of electrons leaking from the tail; these electrons are the
primary particles igniting the cascade. To screen the electric field at
least GJ number density of particles is required. When the flux of
the primary electrons is higher, the number of the first-generation
secondary pairs grows faster, and polarization of the plasma which

can screen the vacuum electric field is achieved at smaller spacial
separation; this results in a smaller size of the plasma blob. So,
cascades with the current density equal to the GJ current density are
most energetic and should produce densest plasma. However, as it
follows from the simulations, for jm > jGJ cascade properties seem
to be less sensitive to the value of jm than properties of cascades with
jm < jGJ. Hence, cascades with jm > jGJ should have energetics
and final multiplicities lower but comparable to those of cascades
with jm = jGJ, while energetics and final multiplicities of cascades
with jm < jGJ should be significantly lower.

In Figs 14 and 15 I plot electric currents through the lower
and upper domain boundaries for cascades with jm = 0.5jGJ and
jm = 1.5jGJ correspondingly. Except for the value of the mean current
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Figure 12. Snapshots of charge density distribution in the calculation domain for cascade with jm = 1.5jGJ. The same notations are used as in Fig. 2.

density these currents behave in a similar way as the currents for a
cascade with jm = jGJ; the relative deviation of the mean over the
cycle current density from jm is also less than ∼10−3.

Regarding the repetition rate of pair formation bursts in cascades
with different current densities I can make only some qualitative
remarks. For cascades with smaller jms pair multiplicity is smaller,
which must result in a less dense plasma tail; there will be less
particles to wipe out of before the next vacuum gap can develop.
On the other hand, if the current density is smaller, particles are
wiped out slower because smaller current density requires less par-

ticles to sustain it. For cascades with higher current densities pair
multiplicity should be higher, but a larger particle flux is required.
So, it seems that dependence of the time between the discharges on
the current density should be moderate; it is also possible that this
dependence is non-monotonic.

4.6 Summary of cascade properties

The case described in details in the previous sections is a good
example of a typical Ruderman–Sutherland cascade. Insights gained
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Figure 13. Screening of the electric field in cascade with jm = 1.5jGJ. Snapshots are taken at the same time moments as the marked snapshots in the bottom
panel of Fig. 12. The same quantities are plotted as in Fig. 3.

from analysing that case helped to draw a general physical picture.
I performed simulation for different pulsar parameters (P, B0, ρ),
and the results are in complete agreement with the general picture
outlined below.

Cascades show limit cycle behaviour for all physical parameters
allowing pair creation. Pair formation is quite regular – in each
discharge a blob of pair plasma is formed; the blob propagates into
the magnetosphere leaving behind a tail of low-energy particles.
When particle number density in the tail becomes comparable to
nGJ a vacuum gap appears, and then a new blob of pair plasma forms.
There are two characteristic time-scales: (i) time-scale associated
with the size of the plasma blob τ 1 = Lblob/c, and (ii) time between
two successive discharges τ 2. The first time-scale is of the order

of τ 1 ∼ hRS/c for all jm, and it should be (much) smaller than the
second time-scale, τ 1 � τ 2. The simulations are inconclusive about
the real dependence of τ 2 on the current density jm, but it seems that
this dependence might be weaker than linear.

When a new burst of pair creation occurs, the vacuum gap de-
taches from the NS surface and propagates into the magnetosphere.
The upper boundary of the gap moves subrelativistically, while the
front of the new blob moves ultra-relativistically; eventually the
gap closes. For sub-GJ current densities the tail of the previous
blob moves slower and the gap disappears faster. For cascades with
super-GJ current densities the gap should disappear faster for larger
values of jm, but the dependence of the tail velocity vtail on jm

is significantly weaker than that in cascades with sub-GJ current
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Figure 14. Currents through the domain boundaries for cascade with jm =
0.5jGJ as functions of time for three consecutive bursts of pair formation.
The currents are averaged over 10 time-steps. The same notations are used
as in Fig. 8.

Figure 15. Currents through the domain boundaries for cascade with jm =
1.5jGJ as functions of time for three consecutive bursts of pair formation.
The currents are averaged over 10 time-steps. The same notations are used
as in Fig. 8 .

densities. The gap should persist for longest time in cascades with
jm = jGJ.

For pulsars with large potential drop across the gap the first gen-
eration of pairs in cascades with jm � 0.5jGJ reaches the radiation-
reaction limited energy. When electric field is screened, these parti-
cles propagate losing their energy by emitting curvature photons. At
first these losses are large, as radiation efficiency depends on parti-
cle energy as ∝γ 4, but then particles lose energy more slowly. There
is also a small amount of particles in the charge sheath at the front
of the plasma blob which feel the non-screened electric field and
are continuously accelerated. For current densities jm � 0.5jGJ par-
ticles do not reach radiation-reaction limited energies. However, in
any case the kinetic energy of the first-generation particles is larger
than it follows from estimates of Ruderman & Sutherland (1975)
and so the final pair multiplicity and energetics of a single bust of
pair formation are higher. The vast majority of energy is carried by
the first-generation pairs and so the heating of the NS polar cap by
the cascade occurs in bursts, when first-generation pair electrons hit
the surface; heating during the ‘relaxation’ phase is negligible. If
the time between successive discharges is large, the heating will be
much lower than it is usually assumed in the Ruderman–Sutherland
model.

During the discharge a superluminal electrostatic wave is formed.
As its phase velocity is larger than the speed of light it is not
damped via the Landau damping. From the performed simulations

the ultimate fate of this wave is not clear because after some time
the code stops resoling its wavelength.

5 D ISCUSSION

I performed for the first time self-consistent time-dependent mod-
elling of electromagnetically driven cascades which included all
essential physical processes. I considered the simplest possible case
– the Ruderman–Sutherland cascade, when all particles in the dis-
charge zone are produced by the cascade itself. Cascade behaviour
is quite regular – spatially localized blobs of pair plasma are formed
during regularly repeating discharges; each blob propagates into the
magnetosphere leaving a tail of mildly relativistic plasma behind.
Energetics of individual discharges is higher than that predicted by
the Ruderman–Sutherland model.

The model is 1D and includes the minimum set of processes
involved; but just because a ‘bare-bone’ system was considered it
was possible to get insights about general physics of electromag-
netically driven cascades. I was interested in dynamics of electro-
magnetic discharges, i.e. how particles are accelerated when pair
production takes place. I did not follow the development of the
full cascade initiated by energetic particles moving in the magne-
tosphere above the polar cap where there is no accelerating electric
field. The latter problem has been studied before by many authors,
and qualitative properties of cascades initiated by a relativistic par-
ticle are relatively well known (e.g. Daugherty & Harding 1982;
Zhang & Harding 2000; Hibschman & Arons 2001b; Medin & Lai
2010). In future works I plan to address this problem using par-
ticle energy distributions obtained from self-consistent discharge
simulations. Although quantitatively results of such full cascade
simulations would be different from that described in the above
mentioned papers, qualitatively they should be similar.

In my 1D simulations, individual discharges are very similar and
electrostatic oscillations are clearly visible and coherent. Usually
1D and 2D models show more coherent behaviour than full 3D
simulations because of the inforced symmetry. Hence, the coher-
ent behaviour present in this 1D simulations could be somewhat
washed out in a more realistic 3D model. The usual picture used in
models of polar cap discharges involves several separate discharge
zones across the polar cap – ‘sparks’ in terms of the Ruderman–
Sutherland model. Whether interaction between sparks via induced
electric field is strong enough for them to be coupled is a priori not
clear. However, particle motion in the superstrong magnetic field
in the pulsar polar cap is 1D, the curvature of magnetic field lines
is small and photon trajectories only slightly deviate from particles
trajectories; this suggests that most of the cascade properties de-
duced from current simulations can be preserved in a full 3D model
for individual sparks, although only direct 3D simulations can prove
this.

I considered the case when particles cannot be extracted from the
surface of the NS, but the results may be applicable to a broader
class of problems. If cascades under different physical conditions
work as a series of discharges, their behaviour should be similar to
that described here. Namely, the blob-tail structure can be preserved,
pair plasma thermalization will take place and transient electrostatic
wave will be excited. In particular, I suspect that polar cap cascades
with space charge limited flow – in a non-stationary version of the
model suggested by Arons & Scharlemann (1979) and Muslimov
& Tsygan (1992) – might have some similarities with the case
described here.

One of the main motivations to start this project was to study
how cascade zone provides the current density required by the
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magnetosphere. It has been speculated that non-stationary cascade
can be sustained at any average current density flowing through
the discharge zone (e.g. Levinson et al. 2005; Timokhin 2006). My
simulations have explicitly shown that this is indeed the case. The
current density at any given point fluctuates strongly, but on average
it is equal to the mean current density jm with very high accuracy.
Current adjustment works well in the relaxation phase too, when
both the charge and the current densities are close to the required
values even when they are averaged over time-scales much smaller
than the flyby time of the calculation domain. It works because in
the tail there are low-energy particles trapped in small amplitude
plasma oscillations, and the weak fluctuating electric field of plasma
oscillations is able to reverse particles of both signs (at different
oscillation phases). Particles which flow backwards do it in time-
averaged sense; they spend more time in backward motion; there is
no separate population of particles flowing only backwards all the
time. Such way of current adjustment is possible because of effective
plasma thermalization which provides low-energy particles.

The current density jm can have the sign opposite to the sign of
the GJ charge density, jm < 0 (Timokhin 2006). I ran simulations
with jm < 0 too; everything works exactly in the same way as in
the case with jm > 0, except that the gap forms at the upper domain
boundary, at the magnetosphere side. This 1D problem is symmetric
with regard to the sign of the current density: if jm < 0, the pair
plasma – which has positive net charge in order to sustain the GJ
charge density – moves towards the NS and generates negative jm.
However, at the magnetosphere side there is no solid surface which
can prevent charged particles from escaping; if a gap forms there,
some charged particles can be sucked from the magnetosphere. In
principle, it might result in the presence of particles of both signs in
the gap and, therefore, in cascade ignition at both ends of the gap;
whether this is the case or not cannot be decided based solely on
qualitative arguments and requires accurate quantitative modelling.
The gap will form in the tail of the blob tearing it apart; this will
happen at distances from the NS surface larger than the polar cap
size, and so the problem cannot be adequately described by the used
1D approximation. The case of jm < 0 will be addressed in a later
work. Qualitatively, however, it seems that any cascade operating
as a series of discharges would produce a population of low-energy
particles, and so it should be able to adjust to any current density in
the way described above, if enough charged particles are generated.

The simulations are inconclusive about how long the thermaliza-
tion persists, because I cannot follow the plasma blob for a long
time. It definitively works during the blob formation. For as long
as there are low-energy particles in the blob the current adjustment
will work as described above. Note that for current adjustment the
number density of low-energy particles should be comparable to
nGJ, which is only a very small fraction of the plasma density in
the blob. If, however, at some time the blob runs out of low-energy
particles, a macroscopic electric field will arise which can adjust
the current density by creating a separate population of backward
moving particles or/and shifting mean velocities of electrons and
positrons as suggested in e.g. Scharlemann (1974) and Lyubarsky
(2009).

I performed a full-fledged kinetic modelling of pair cascades in-
cluding all essential classes of physical processes relevant to dynam-
ics of electromagnetically driven cascades, listed at the beginning
of Section 2. All previous attempts to model time-dependent cas-
cades used on-the-spot approximation for pair injection. In some
works fluid approximation has been used, where electrons and
positrons were represented as fluids (Levinson et al. 2005; Luo
& Melrose 2008). Although the physical situation I considered –

the Ruderman–Sutherland cascade in the polar cap – is different
from ones studied in the previous works, it is possible to assert
applicability of on-the-spot and two-fluid approximations in a gen-
eral context, based on the general picture of cascade development
inferred from my simulations.

It turns out that the delay of pair injection due to finite time
necessary for a photon to propagate before it is absorbed does not
introduce new qualitative features. I also performed simulations us-
ing on-the-spot approximation, when an electron–positron pair was
injected at the position and at time where and when the parent par-
ticle emitted the pair producing photon. Quantitatively, on-the-spot
approximation introduces error in final energies of the relativistic
particles and all depending on them cascade parameters by a fac-
tor of several. However, qualitatively, the results are similar, i.e.
the pattern of the plasma flow remains the same: pair formation
is quasi-periodic with plasma blobs propagating into the magneto-
sphere leaving tails of modestly relativistic particles.

In the first work about modelling of time-dependent cascades
by Al’Ber et al. (1975) a zero-dimensional model was used – only
temporal, but not spatial, variations in particle number density were
considered. In that model, the production of larger amount of par-
ticles than necessary for screening of the electric field was due
to the time delay between the photon emissions and absorptions.
As all later attempts to model time-dependent cascades used on-
the spot approximations for pair injections (Levinson et al. 2005;
Beloborodov & Thompson 2007; Luo & Melrose 2008), the ques-
tion about the importance of pair injection delay remained unan-
swered. In my simulations the overshooting in pair number density
arises mainly because of the spatial separation between the acceler-
ation and the pair-production zones in a quite regular plasma flow.
Particles are accelerated in the gap and must travel some distance
before they can emit high-energy photons. There are particles of
only one charge sign in the gap, and so pairs are injected at only one
end of the gap. There always exists a spatial domain with the electric
field (the gap) where pairs cannot be injected and the electric field
is not regulated directly by the pair injection. The back reaction on
the electric field proceeds only by means of gap shrinkage, which
is slow. This causes an overshooting in pair production and so the
intermittency of pair creation. Inclusion of spatial and temporal
delays of pair injection due to photon propagation only exagger-
ates this effect, but it does not introduce a new kind of behaviour.
Hence, using on-the-spot approximation in toy models seems to be
justified. On the other hand, in a situation when plasma flow can
become chaotic the time delay might become a deciding factor for
the creation of plasma density overshoot.

Two-fluid approximation, on the other hand, is inadequate. The
pair plasma in the discharge zone acquires a large momentum dis-
persion and some particles become mildly relativistic. A weak fluc-
tuating electric field easily reverts particles of both signs and plasma
becomes essentially four-component (see Section 4.3). In two-fluid
approximation at any given point at any time each particle specie
(electrons and positrons) can move only in one direction. This in-
troduces an additional rigidity, which might be the reason why
Levinson et al. (2005) got strong fluctuating electric field through-
out the whole domain. Although I considered a different physical
situation and the results described in this paper cannot be directly
compared with the results of Levinson et al. (2005) and Luo &
Melrose (2008), I think that the latter are seriously flawed by the
use of two-fluid approximation.

Now I would like to discuss how properties of cascades could
manifest in pulsar radioemission. Pair creation is not chaotic, with
clear signatures of a limit cycle behaviour; this ought to have strong
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observational implications. If, as it is widely accepted today, pulsar
radioemission is directly related to pair production, the periodicity
of cascades must be visible in power spectra of pulsar individual
pulses. There are two characteristic time-scales: τ 1, associated with
the blob size, and τ 2, the time between discharges. The size of
the blob to the order of magnitude is approximately the same for
all current densities, and so τ 1 is of the same order for any rea-
sonable current density jm; τ 2, on the other hand, should be more
variable.

Pulsar radioemission is highly variable on time-scales compa-
rable with the pulsar period: emission occurs mainly in the form
of subpulses, in some pulsars subpulses drift, some pulsars change
modes and/or switch off for many periods. This hints that current
density can fluctuate because of some processes involving the whole
magnetosphere (e.g. Arons 1983; Timokhin 2010). Cascades can ad-
just to any reasonable current density, and so the current density at a
fixed colatitude might vary on time-scales much larger than τ 1, τ 2;
on the other hand, the current density varies across the pulsar polar
cap anyway. Because of these, an individual subpulse represents
emission averaged over time and space, or, in other words, over a
range of different jms, and so the features of cascades along sepa-
rate field lines will be smeared. Hoverer, the time-scale associated
with the size of plasma blob τ 1 by the order of magnitude remains
the same and should be clearly visible in the power spectrum. The
second time-scale τ 2 should be less prominent, but, as discussed
before, it might not be extremely sensitive to the current density,
and, therefore, it might manifest as a broad feature in the power
spectrum.

The blob is of the same length as the region with the acceler-
ating electric field. In the Ruderman–Sutherland model this length
is small, and the corresponding time-scale τ 1 is less than a mi-
crosecond. In space charge limited flow models, on the other hands,
the length of the acceleration zone should be comparable to the
NS radius; if in this case cascades work similarly, τ 1 should be
of the order of ∼100 μs. The second time-scale, τ 2, should be
substantially longer, a factor from a few to hundreds. There is ev-
idence of different characteristic time-scales in pulsar microstruc-
ture, from nano- to milliseconds; in some pulsars microstructure
is also quasi-periodically modulated (e.g. Boriakoff 1976; Popov
et al. 2002). It is not clear whether microstructure time-scales are
due to polar cap cascades variability or not, but τ 1, τ 2 can be in the
range of observed microstructure modulation times, and cascades
operating as a series of discharges should have double time-scale
signature.

The problem of pulsar radioemission mechanism in notoriously
difficult and currently there is no reliable theory which could ade-
quately explain it. The firmly established observational fact about
pulsar radioemission is that it is due to some collective process. In
my simulations I saw formation of a large amplitude electrostatic
wave. Its phase velocity is larger than the speed of light, and it is not
damped via the Landau damping. In 1D in a superstrong magnetic
field only electrostatic waves exist, but in a real pulsar such wave
can be coupled to an electromagnetic mode; if it stays superluminal,
it can escape the magnetosphere. This wave is a collective form of
emission, as it involves coherent macroscopic plasma motion. The
simulations are inconclusive about the fate of that wave because at
some point the numerical scheme stops resolving its wavelength;
it is also not clear how coherent the whole picture is in 3D. May
be it is too preliminary to tell whether pulsar radioemission, or
some of its component, is related to this transient wave, but in
future research special attention should be paid to such transient
waves.
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APPEN D IX A : O NE-DIMENSIONAL
T IME- D EPEN D ENT ELECTRODYNAMICS
O F T H E PO L A R C A P

In the reference frame corotating with the NS the Gauss law is (see
e.g. Arons & Scharlemann 1979)

∇ × E = 4π(η − ηGJ) . (A1)

In the 1D approximation the only changing component of electro-
magnetic fields is the electric field parallel to the static magnetic
field of the NS. The solution of equation (A1) is given by

E = E|x=0 + 4π

∫ x

0
(η − ηGJ) ds . (A2)

I am solving a non-stationary problem where boundary conditions
can change with time because the magnetosphere can respond to
the changes of conditions in the polar cap. If the electric field just
outside the NS surface E|x=0 is known at any given moment of time,
the electric field in the calculation domain can be calculated using
equation (A2). For this problem it is more convenient to reformulate
the boundary conditions on the electric field at the NS surface E|x=0

in terms of the electric current flowing through the system.
As ηGJ does not change with time, differentiating equation (A2)

with respect of time and using charge conservation

∂η

∂t
+ ∂j

∂x
= 0 (A3)

I get

∂E

∂t
= ∂E

∂t

∣∣∣∣
x=0

− 4π(j − j |x=0) , (A4)

or

∂E

∂t
= −4π(j − jm) , (A5)

where

jm ≡ 1

4π

∂E

∂t

∣∣∣∣
x=0

+ j |x=0 . (A6)

To clarify the meaning of jm let us consider a small region at the
NS surface (see Fig. A1) . NS crust can be considered as a good

Figure A1. Current flow through the surface on the NS (see text for
explanation).

conductor; the charges can accumulate only on its surface, and the
electric field in the crust is zero. The electric field at the NS surface
E|x=0 = 4πσ , where σ is the surface charge density. The change
of the total charge in the fiducial volume in Fig. A1 δq is due to
currents through the boundaries of the volume:

δq = δσδS = δt(−δJout + δJin) = δt(− j |x=0 δS + δJin) . (A7)

For the electric field at the NS surface I have then

1

4π

∂E

∂t

∣∣∣∣
x=0

= ∂σ

∂t
= − j |x=0 + dJin

dS
. (A8)

Substituting this expression into equation (A6) I get

jm = dJin

dS
, (A9)

i.e. jm is the current density which flows in the NS crust towards
the discharge zone; it causes current in the discharge zone and/or
accumulation of charges at the NS surface. In other words, jm is the
current density that the magnetosphere wants to flow through the
cascade zone. Equation (A5) is a convenient form for an equation
for the electric field in a problem where a large system with very
high inductivity requires some specific current density from a much
smaller system plugged into the same electrical circuit (see e.g.
Levinson et al. 2005; Beloborodov & Thompson 2007). Note that
equation (A5) correctly accounts for the retardation of changes in
the electric field – at any given point in space the electric field
changes if j deviates from jm; the current density j is generated by
particle motion, and the latter cannot move faster than the speed of
light.
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