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ABSTRACT

We study the efficiency of pair production in polar caps of young pulsars under a variety of conditions to estimate
the maximum possible multiplicity of pair plasma in pulsar magnetospheres. We develop a semi-analytic model for
calculation of cascade multiplicity which allows efficient exploration of the parameter space and corroborate it with
direct numerical simulations. Pair creation processes are considered separately from particle acceleration in order to
assess different factors affecting cascade efficiency, with acceleration of primary particles described by recent self-
consistent non-stationary model of pair cascades. We argue that the most efficient cascades operate in the curvature
radiation/synchrotron regime, the maximum multiplicity of pair plasma in pulsar magnetospheres is ∼few × 105.
The multiplicity of pair plasma in magnetospheres of young energetic pulsars weakly depends on the strength of
the magnetic field and the radius of curvature of magnetic field lines and has a stronger dependence on pulsar
inclination angle. This result questions assumptions about very high pair plasma multiplicity in theories of pulsar
wind nebulae.
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1. INTRODUCTION

The idea that production of electron–positron pairs in
magnetospheres of rotation-powered pulsars is intimately
connected with their activity had been proposed by Sturrock
(1971) only a few years after the discovery of pulsars (Hewish
et al. 1968). Since then it has become an integral part of the
standard pulsar model and today, there is little doubt that an
active rotationally powered pulsar produces electron–positron
plasma. Although the pulsar emission mechanism(s) is still not
yet identified, there is strong empirical evidence that pulsars
stop emitting radio waves when pair formation ceases—the
threshold for pair formation roughly corresponds to the “death
line” in pulsar parameter space, what was already noted by
Sturrock (1971). Furthermore, the narrow peaks in many pulsar
high-energy light curves (Abdo et al. 2010) require pervasive
screening of the whole magnetosphere by pair plasma, except
in narrow accelerator gaps (e.g., Watters et al. 2009; Pierbat-
tista et al. 2015). Understanding pair plasma generation in
pulsar magnetospheres is therefore of crucial importance for
developing pulsar emission models.

In the standard pulsar model, initially proposed by Goldreich
& Julian (1969) and Sturrock (1971), the magnetosphere is
filled with dense pair plasma which screens the accelerating
electric field everywhere except some small zones which are
responsible for particle acceleration and emission. Pair plasma
is primarily created via conversion of γ rays in the strong
magnetic field near the polar caps (PCs). Pair production in the
PCs is a “cornerstone” of the standard model—without dense
plasma produced at the PCs, at the base of open magnetic field
lines, the magnetosphere would have large volumes with
unscreened electric field, as pair creation in e.g., outer gaps
(Cheng et al. 1976) cannot screen the electric field over the rest
of the magnetosphere.

Charge starvation (Arons & Scharlemann 1979) or vacuum
gaps (Ruderman & Sutherland 1975) at the polar cap, when the
number density of charged particles is not enough to screen the
electric field, leads to formation of accelerating zone(s). Some
charged particles enter this zone, are accelerated to very high

energies, and emit gamma rays that are absorbed in the
ultrastrong magnetic field, creating electron–positron pairs. The
pairs, being relativistic, can also emit pair producing photons
and so the avalanche develops until photons emitted by the last
generation of pairs can no longer produce pairs and escape the
magnetosphere.
The pair plasma created by pulsars flows out of the

magnetosphere along open magnetic field lines and provides
the radiating particles for the surrounding Pulsar Wind Nebulae
(PWNe). Models of PWNe depend (at least) on the density of
the plasma, what produces the observed synchrotron and
inverse Compton emission. Estimates of the pair multiplicity
(the number of pairs produced by each primary accelerated
particle) needed to account for the emission from the Crab
pulsar wind nebula (PWN) range from about 105–106 (de Jager
et al. 1996) up to 107 (e.g., Bucciantini et al. 2011); for the
Vela PWN the multiplicity is estimated to be about 105 (de
Jager 2007). PWNe therefore give the most compelling
evidence for pair production and pair cascades in at least
young energetic pulsar magnetospheres.
Although PWNe are observed only around young pulsars

(< a few times 104 years), evidence for pairs, at least for high
plasma densities larger than those provided by primary
particles, can also be found in older pulsars. Synchrotron
absorption models for the eclipse in the double pulsar system
PSR J0737–3039 (Lyutikov 2004; Arons et al. 2005) require a
pair multiplicity of around 106 for the recycled 22 ms pulsar in
that system.
The cascade process in pulsar PCs has been the subject of

extensive numerical as well as analytical studies (e.g.,
Daugherty & Harding 1982; Gurevich & Istomin 1985; Zhang
& Harding 2000; Hibschman & Arons 2001a, 2001b; Medin &
Lai 2010). The pair plasma multiplicity obtained in these
studies was significantly lower than estimates of pair plasma
multiplicity in PWNe, as it did not exceed ∼few × 104. Most
of those works considered pair creation together with the
particle acceleration, which makes these analyses dependent on
the acceleration model considered. These studies also assumed
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steady, time-independent acceleration of the primary particles.
However, recent studies by Timokhin (2010) and Timokhin &
Arons (2013) have found that pulsar polar cap pair cascades are
not time-steady in the general case of arbitrary current,
particularly those required by global magnetosphere models
(e.g., Contopoulos et al. 1999; Spitkovsky 2006; Timokhin
2006; Kalapotharakos & Contopoulos 2009).

In this paper we study the question of what the maximum
pair multiplicity achievable in pulsar polar cap cascades is and
under which circumstances it is achieved. In contrast to
previous pair cascade studies, we take a multistep approach.
We consider the physical processes in pair cascades and
particle acceleration models separately in order to clearly set
apart different factors influencing the efficiency of pair
cascades. We first assess how each of the microscopic
processes affects the final multiplicity and the pulsar parameter
ranges that result in the largest possible pair multiplicity. Then,
we employ the most recent model of non steady-state particle
acceleration in pulsar PCs and derive a simple analytical
estimate for the maximum energy of particles accelerated in a
non-stationary cascade. One of the most important results of
our study is a strong upper limit on pair plasma multiplicity in
pulsars.

We limit ourselves to the case of cascades at the PCs of
young3 pulsars as from previous theoretical studies of polar cap
cascades, such pulsars are expected to be the most efficient pair
producers. We rely on results of previous cascade studies in our
choice of the specific cascade process, namely cascades
initiated by curvature radiation (CR) of primary particles.

The plan of the paper is as follows. In Section 2 we briefly
discuss the efficiency of cascades in general and give an
overview of the most efficient cascade process in pulsar PCs. In
subsequent sections we consider in detail all physical processes
in such cascades. Sections 3–7, the largest part of this paper,
are devoted to development of a simple semi-analytical model
for estimation of pair production efficiency in PCs of young
pulsars. This model allows efficient exploration of pulsar
parameter space and helps to clarify the main factors affecting
cascade multiplicity. Then, in Section 8 we use direct
numerical simulations of PC cascades in a Crab-like pulsar to
show that predictions of our semi-analytical model are indeed
correct. We discuss uncertainties of current pulsar models in
Section 10 and summarize and discuss our findings and their
implications in the Discussion.

2. PHYSICS OF POLAR CAP CASCADES: AN OVERVIEW

An electron–positron cascade can be thought of as a process
of splitting the energy of primary particles into the energies of
secondary particles. The maximum multiplicity, the number of
secondary particles for each primary particle, of an ideal
cascade initiated by a single primary particle with energy òp
would be

2 . 1max
p

,esc
( )




k
g



where ,escg is the maximum energy of photons escaping from
the cascade (or the minimum energy of pair producing
photons). Not all of the primary particle energy goes into pair
producing photons, and pairs created in the cascade do not
radiate all of their energy into the next generation of pair
producing photons. Hence, maxk is only the theoretical upper
limit on the multiplicity of a real cascade. The total pair yield of
the cascade is a combination of four factors: (a) number of
primary particles, (b) initial energy of primary particle—the
higher the energy the more pairs can be produced, (c) threshold
for pair formation—the lower the threshold the higher the
multiplicity, (d) efficiency of splitting the energy of primary
particles into pairs—the higher the fraction of particle energy
going into pair creating photons, as opposed to the final kinetic
energy of the particles and photons below the pair formation
threshold, the higher the multiplicity.
In young, fast rotating pulsars, the electric field in the polar

cap acceleration zones is strong and primary particles can be
accelerated up to very high Lorentz factors, γ  107. At these
energies the most effective radiation process is CR. CR
efficiency grows rapidly with the particle energy and for young
pulsars becomes the dominant emission mechanism for primary
particles. For secondary particles, which are substantially less
energetic than the primary ones, the primary way to create pair
producing photons is via synchrotron radiation. In Section 9 we
argue that although another possible emission mechanism for
secondary particles—Resonant Inverse Compton Scattering
(RICS) of soft X-ray photons emitted by the NS—can generate
pair producing photons in pulsars with magnetic field

3 10 G11 ´ , that channel never becomes the dominant one
for pair production in young pulsars, at best resulting in pair
multiplicity comparable to the one of the synchrotron channel.
Hence, in young pulsars that are expected to have the highest
multiplicity pair plasmas, the polar cap cascades should operate
primarily in the CR-synchrotron regime—all known studies of
cascades in pulsar polar cap agree on this point. In this paper
we study in detail CR-synchrotron cascades. The resulting
multiplicities will be good estimates for a wide range of pulsar
parameters, however, as we consider only synchrotron
radiation of secondary particles, for pulsars with magnetic field

3 10 G12 ´ our analysis might underestimate the cascade
multiplicity by a factor of ∼2, see Section 9.
Figure 1 gives a schematic overview of electron–positron

cascade development in polar cap regions of young pulsars.
Shown are the first two generations in a cascade initiated by a
primary electron. Primary electrons emit CR photons (almost)
tangent to the magnetic field lines; primary electrons and CR
photons are generation 0 particles in our notation. Magnetic
field lines are curved and the angle between the photon
momentum and the magnetic field grows as the photon
propagates further from the emission point. When this angle
becomes large enough, photons are absorbed and each photon
creates an electron–positron pair—generation 1 electron and
positron. The pair momentum is directed along the momentum
of the parent photon and at the moment of creation, the
particles have non-zero momentum perpendicular to the
magnetic field. They radiate this perpendicular momentum
almost instantaneously via synchrotron radiation and then
move along magnetic field lines. Although these secondary
particles are relativistic, their energy is much lower than that of
the primary electron and their curvature photons cannot create

3 Pulsars with strong polar cap cascades should have potential drop over the
polar cap well in excess of the pair formation threshold as well as large
magnetic fields B  1011 G and short rotational periods, so that particle
acceleration happens over a short distance and cascade develops in the region
with strong magnetic field. The best single parameter selecting pulsars with
such properties is the small characteristic age P P2 ˙t = . A detailed discussion
of the pulsar parameter range where approximations used in this paper are
formally applicable is given at the end of Section 6.2.
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pairs. After the emission of synchrotron photons, secondary
particles (generation 1 and higher) no longer contribute to
cascade development. Generation 1 photons (synchrotron
photons produced by the generation 1 particles) are also
emitted (almost) tangent to the magnetic field line—as the
secondary particles are relativistic—and propagate some
distance before acquiring the necessary angle to the magnetic
field and creating generation 2 pairs. These pairs in their turn
radiate their perpendicular momentum via synchrotron radia-
tion, emitting generation 2 photons. The cascade initiated by a
single CR photon stops at a generation where the energy of
synchrotron photons falls below ,escg .

Only primary particles emit pair producing photons as they
move along the field lines; all secondary particles emit pair
producing photons just after their creation. The cascade
development can be thus divided into two parts: (i) primary
particles emit CR photons as they move along magnetic field
lines and (ii) each CR photon gives rise to a synchrotron
cascade, when synchrotron photons create a successive
generation of pairs which emit the next generation synchrotron
photons at the moment of creation. This division goes between
generation 0 and all subsequent cascade generations.

In the following sections we analyze all four factors
regulating the yield of CR-synchrotron cascades listed at the
beginning of this section (in reverse order, from d to a). In
Sections 3–7 we develop a simple semi-analytical models for
calculation of multiplicity of strong PCs cascades initiated by a
primary electron, which we then compare with detailed
numerical computation described in Section 8. We start with
gamma-ray absorption in a strong magnetic field in Section 3;
then we discuss the efficiency of the synchrotron cascade in
Section 4. CR is considered in Section 5 and in 5.3 we discuss
the multiplicity of a CR-synchrotron cascade initiated by a
single particle of given energy. This covers items c and d from
the list of factors affecting cascades efficiency. In Section 6 we
address item b from the list—energy of primary particles
initiating the cascade. Sections 7 and 8 are devoted to the total
multiplicity of a CR-synchrotron cascade when particle
acceleration is taken into account—in Section 7 we present
results for cascade multiplicities from a semi-analytical model
and in Section 8 we present results of detailed numerical
simulations of cascades in a Crab-like pulsar. In Section 9 we
discuss the role of RICS in PCs cascades and argue that
considering only CR-synchrotron cascades gives us an
adequate estimate of the pair multiplicity in young pulsars.
Finally, in Section 10, we address item a–the mean flux of
primary particles and the total yield of a CR-synchrotron
cascade in an energetic pulsar. We argue that this is the most
important factor regulating pair yield in energetic pulsars.
Despite the uncertainty in determining the mean flux of primary
particles, we can set a rather strict upper limit on pair
multiplicity in pulsars.

3. PHOTON ABSORPTION IN THE MAGNETIC FIELD

3.1. Opacity for B–g Pair Production

The opacity for single photon pair production in strong
magnetic field is (Erber 1966)

b, 0.23 sin exp
4

3
2B

f

c
( ) ( )a y

a
y

c
= -g 

⎛
⎝⎜

⎞
⎠⎟

where b B Bqº is the local magnetic field strength B
normalized to the critical quantum magnetic field
B e 4.41 10 Gq f c

2 13a= = ´ , ψ is the angle between the
photon momentum and the local magnetic field,

e c 1 137f
2 a = » is the fine structure constant, and

mc 3.86 10 cmc
11= = ´ - is the reduced Compton

wavelength. The parameter χ is defined as

b
1

2
sin , 3( )c yº g

where g is the photon energy in units of mec
2. For convenience

from here on, all particle and photon energies will be quoted in
terms of mec

2. The optical depths for pair creation by a high
energy photon in a strong magnetic field after propagating
distance l is

l x dx, , , 4
l

B
0

( ) ( )( ) ( ) òt a y=g g

where integration is along the photon’s trajectory.
Expression (2) is accurate if the magnetic field is small

compared to the critical field Bq, b < 0.2 suffices, and if
sin 2 y >g so that the created pair is in a high Landau level;

pair production into low Landau levels and for higher magnetic
fields has been discussed in Daugherty & Harding (1983) and
Harding et al. (1997). For most pulsars, the magnetic field in
polar cap regions is smaller that Bq/3. In this paper we study
cascades in pulsars with “normal” magnetic fields and so we
neglect high-field effects.
Expression (2) becomes inaccurate when pairs are created at

low Landau levels, near the pair formation threshold, it
overestimates the opacity and even formally allows pair
formation below the kinematic threshold sin 2 y =g . How-
ever, pairs created at low Landau levels will not give rise to
strong cascades, as their perpendicular energy will be too low
to emit pair-producing synchrotron photons. Hence, for the
case of strong cascades, accurate treatment of pair formation
near the kinematic threshold is not necessary. Throughout this
paper we use Erber’s approximation (2) in all our analytical
calculations but introduce a cut off at the kinematic threshold

sin 2 y =g as described at the end of this section, thus taking
into account the cessation of pair formation below the the
kinematic threshold.
If the mean free path (mfp) of a pair-producing photon lγ is

comparable to or larger than the characteristic scale of the
magnetic field variation LB, this photon will not initiate a strong
cascade with the same emission processes by which it was
produced. The reason for this is as follows. The opacity for γB
pair production exponentially depends on the magnetic field
strength and photon energy via χ. The energy of the next
generation photon will be smaller than that of the primary one,
and, because the primary photon has already traveled the
distance over which the magnetic field has substantially
declined, the magnetic field along the next generation photon’s
trajectory will be substantially weaker than that along the
primary photon’s trajectory.4 The next generation photon’s mfp
will be much larger than than that of the primary photon, and,
even if this secondary photon will be absorbed, it will be the

4 In the polar cap, photons are emitted by ultrarelativistic particles moving
along magnetic field lines. At emission points photons are almost tangent to
field lines and the differences in initial photon pitch angles for different
generations can be neglected.
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last cascade generation. Hence, in a strong cascade, for all but
the last generation photons, l LBg  . A reasonable estimate for
LB would be the distance of the order of the NS radius Rns as
any global NS magnetic field decays with the distance as
r Rns( ) d- , δ � 3. Very localized, Sun spot like magnetic fields,
are, in our opinion, of no importance for the general pulsar case
as the probability of such a “spot” to lie at the polar cap should
be rather low, i.e., most pulsars should be able to produce
plasma in a more or less regular magnetic field. A dipole field,
δ = 3, is often considered as a reasonable assumption for a
general pulsar model. A pure dipole field, however, seems to be
too idealized of an approximation, as even if the NS field is a
pure dipole, it will be slightly disturbed by the currents flowing
in the magnetosphere. In general, near dipole magnetic fields
with different curvatures of magnetic field lines should be
examined in cascade models.

We consider strong cascades with large multiplicities, where,
as argued above, photons propagate distances much shorter
than the characteristic scale of the magnetic field variation, so
we assume that in the region where most of the pairs are
produced the magnetic field is constant. The radius of curvature
of magnetic field lines cr is not smaller than LB, and as l LBg 
the angle ψ is always small, the approximation sin y y» is
very accurate. For photons emitted tangent to the magnetic field
line, dx dcr y= . In our approximation both b and cr are
constants. From Equation (3) we have b2 y c= g , and
substituting it into Equation (4) we can express the optical
depth τ to pair production as an integral over χ

l A
b

d, exp
4

3
, 5

l
c

2 0

,

( )
( )

( )
( )






òt
r

c
c

c= -g t
g

c yg ⎛
⎝⎜

⎞
⎠⎟

where A 0.92 1.74 10 cmf c
8 1aº » ´t

- .
Integrating Equation (5) over χ by parts two times we can

get an expression for τ in terms of elementary functions and the
exponential integral function Ei:

A
b

e
2

1
4
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9
Ei

4

3
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2
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c
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- c

⎡
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⎠⎟

⎤
⎦⎥

Ei(z) is a widely used special function, defined as

z t t dtEi exp
z

( ) ( )ò= - -
-

¥
. There are efficient numerical

algorithms for its calculation implemented in many numerical
libraries and scientific software tools; using Equation (6) for
calculation of the optical depths will result in much more
efficient numerical codes than direct integration of
Equation (5).

As the optical depth to pair formation grows exponentially
with χ (and distance), for analytical estimates it is reasonable to
assume that all photons are absorbed when they have traveled
the distance lγ such that τ(lγ) = 1. We denote the value of χ
when the optical depth reaches 1 as :ac

: 1. 7a a( ) ( )c t c =

In all our computations we will use ac as the value of the
parameter χ at the point of the photon’s absorption. ac is a
solution of the nonlinear Equation (7) with τ given by
Equation (6). Because of the exponential dependence of τ on

1/χ it is to be expected that 1 ac should have a close to linear
dependence on logarithms of g, b, and cr . We solved
Equation (7) numerically for different values of g, b, and cr
and, indeed, the inverse quantity 1 ac depends almost linearly
on log g, blog , and log cr in a wide range of these parameters.
Making a modest size table of 1 ac values one can later use
piecewise interpolation to find a particular value of ac quite
accurately.
In Figure 2 we plot contours of 1 ac as functions of log( )g

and Blog( ) for three different values for the radius of curvature
of the magnetic field lines. We want to point out that 1 ac
differs from the value 1 15ac = used by Ruderman &
Sutherland (1975), especially for higher energy photons.
Although this difference is only a factor of a few, as we will
point out later, the cascade efficiency in each generation
depends on the corresponding value of ac , and in a strong
cascade with several generations, the estimate for the final
multiplicity will be substantially affected by the value of ac .
Erber’s expression is not applicable for pairs produced at low

Landau levels as it overestimates the opacity and, formally,
solutions for ac obtained from Equation (7) allows pair creation
even for sin 2 y <g . In our analytical treatment we introduce
a limit on ac to correct for the kinematic threshold. For photons
above kinematic threshold from Equation (3) it follows that

b, 8a ( )c >

Figure 1. Schematic representation of electron–positron cascade in the polar
cap of a young pulsar, see the text for description.
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In all our analytical calculation we get ac̃ from Equation (7)
and then use the maximum value of ac̃ and b:

bmax , . 9a a( )˜ ( )c c=

In Figure 3 we plot contours of 1 ac which incorporate
corrections to ac due to the kinematic threshold according to
Equation (9). It is clear from the plot that this correction affects
only cases with high magnetic field and low particle energies.

3.2. Energy of Escaping Photons

As discussed above, photons escaping the cascade are those
whose mfp lg is larger than the distance of significant magnetic
field attenuation LB. The formal criteria we use for calculating
the energy of escaping photons ,escg is l s R,esc esc ns( ) =g g ; sesc
is a dimensionless parameter quantifying the escaping distance
in units of Rns. The photon mfp is l acr y=g and expressing the
angle between the photon momentum and the magnetic field at

the point of absorption ay through ac we get a (nonlinear)
equation for ,escg

s R

b

b
2

, ,
. 10a

,esc
c

esc ns

,esc c( )
( )

r c r
=g

g

The nonlinearity in this equation is due to dependence of ac on
,escg , b, and cr . Using an interpolation table for 1 ac this

equation is very easy to solve numerically for all reasonable
values of physical parameters involved.
In Figure 4 we plot energy of escaping photons, log ,escg as

a function of the radius of curvature of magnetic field lines cr
and magnetic field strength B for s 1esc = . For smaller values of
sesc the whole plot would move to the left. This figure shows
(an obvious) trend that for higher magnetic field and smaller
radii of curvature, the energy of escaping photons is lower,
which allows for more cascade generations and larger multi-
plicity. The break in contour lines around Blog 12.4 is due
to the kinematic threshold.

Figure 2. Contour plot of 1 ac as a function of the logarithms of the magnetic field strength B in Gauss, and photon energy g normalized to the electron rest energy,
for three values of the radius of curvature of magnetic field lines 10 , 10 , 10 cmc

6 7 8r = . 1 ac values shown on this plot are calculated from Equation (7) and are not
corrected for the kinematic threshold (see text).

Figure 3. Contour plot of 1 ac corrected for kinematic threshold according to Equation (9). These values of 1 ac are used in all calculations within semi-analytic
model. Notations are the same as in Figure 2.
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For a given geometry of the magnetic field a more accurate
analytical expression for the energy of escaping photons can be
derived using an exact expression for ψ along photon’s travel
path by expanding the integral in Equation (4) around its upper
endpoint, as was done by Hibschman & Arons (2001b).
However here we try to explore different possible magnetic
field configuration—exploring parameter space in cr —and our
simple estimate is accurate to a factor of a few.

4. SYNCHROTRON CASCADE

In this section we discuss the synchrotron cascade, where
most of the electron–positron pairs are created. The synchro-
tron cascade is the part of the whole cascade that is initiated by
generation 0 photons. In the synchrotron cascade each
generation’s primary photon is divided into many (lower
energy) next generation’s pair-producing photons by synchro-
tron radiation of freshly created pairs.

4.1. Fraction of Parent Photon Energy Remaining in the
Cascade

A high energy photon, when absorbed in the magnetic field,
produces an electron and a positron; the total energy of these
particles is equal to the energy of the photon. Particle momenta
just after production have pitch angles equal to ay , when pair
production takes place well above threshold. When pairs are
created at high Landau levels, as is the case in strong cascades,
relativistic particles have non-zero pitch angles and they radiate
their perpendicular energy via synchrotron radiation; in super-
strong magnetic fields, this happens almost instantaneously.
The component of particle momentum parallel to the magnetic
field is unaffected by synchrotron radiation and so the final
Lorentz factor of the particle ,F will be

1 1 11a,F
2 1 2

,I ,I
2 1 2( ) ( ) ( )  b y= - » +

-
 

-


⎡⎣ ⎤⎦
where v cb º  is particle velocity along the magnetic field
line and ,I is the initial Lorentz factor of the particle right

after creation. If the photon absorption happens at 1ac < —

which is indeed the case near pulsar PCs, see Section 3.1—with
a high degree of accuracy we can assume that the energy of the
photon is equally divided between the electron and positron
(e.g., Daugherty & Harding 1983). Expressing ay in Equa-
tion (11) through ac , b2a a y c= g , and the initial particle
energy through the photon energy g, 2,I = g we get ,F as
a function of ac and b

b2
1 . 12a

,F

2 1 2

( )
 c

= +g


-

⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

The fraction synz of photon energy radiated as synchrotron
photons, which is going into subsequent pair creation, is

b

2
1 1 . 13a

syn
,I ,F

2 1 2
( )

( )
 


z
c

=
-

= - +
g

 
-

⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

Because of the kinematic threshold (8) the minimum value of
this fraction is 0.292bsyn a

∣z c =  , i.e., formally5 at least ;30%
of absorbed photon energy will go into synchrotron radiation of
created pairs. In Figure 5 we plot the fraction of pair-producing
photon energy radiated as synchrotron photons by freshly
created pairs given by Equation (13). Contours of synz are
plotted as functions of the photon energy g and magnetic field
strength B, the radius of curvature was assumed to be

10 cmc
7r = . The dependence of synz on cr (via ac ) is very

weak, and Figure 5 is a good representation of how synz
depends on g and B for any cr of interest.
It is evident from Figure 5 that for higher magnetic field

strengths, B 3 10 G12 ´ , and lower energies of parent
photons, a progressively smaller fraction of the parent photon

Figure 4. Energy of escaping photons: contours of log ,escg as a function of
logarithms of the radius of curvature of magnetic field lines cr in cm and
magnetic field strength B in Gauss for s 1esc = .

Figure 5. Fraction of the parent photon energy radiated as synchrotron photons
by freshly created pairs: contours of synz as a function of logarithms of the
parent photon energy g and magnetic field strength B in Gauss for

10 cmc
7r = .

5 As we mentioned above, the physics of near-threshold pair formation is
more complicated and our simplified treatment is less accurate in this regime.
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energy goes into synchrotron photons; the rest remains in the
kinetic energy of the created pairs moving along magnetic field
lines. The portion of the parent photon energy energy left in
kinetic energy of pairs does not go into production of next
generation pairs but is “lost” from the synchrotron cascade.6

The reason for this is that for higher magnetic field strengths
pairs are created when the photon has a smaller pitch angle ay ,
so that a smaller fraction of the photon energy goes into
perpendicular pair energy, and hence, a smaller fraction of the
photon energy is emitted and remains in the cascade.

4.2. Number of Secondary Photons

At each pair creation event the parent photon is effectively
transformed into an electron–positron pair and lower energy
synchrotron photons. Those photons become parent photons
for the next cascade generation or escape the magnetosphere,
terminating the cascade.

The characteristic energy of synchrotron photons emitted by
a newly created particle in terms of quantities used in this paper
is given by

b
3

2
. 14a,syn ,I

2 ( ) y=g 

The number of synchrotron photons with the characteristic
energy ,syng —these photons carry most of the energy of
synchrotron radiation—emitted at each event of conversion of a
parent photon with energy g into an electron–positron pair is

n
4

3
. 15

a
syn

syn

,syn

syn
( )





z z

c
=

g

g


In Equation (15) both synz and ac are functions of B, g, and cr .
In Figure 6 we plot contours of nsyn as functions of the photon

energy and magnetic field strength, the radius of curvature was
assumed to be 10 cmc

7r = . Two clear trends are visible on this
plot: the lower the energy of the primary photon the larger the
number of secondary synchrotron photons produced at each
conversion event, and the higher the magnetic field the smaller
is the number of synchrotron photons. The first one is a general
trend of emission processes when higher energy particles emit
less photons which, however, have larger energies. The second
trend is due to the suppression of the synchrotron cascade
discussed above, in Section 4.1.

4.3. Multiplicity of Synchrotron Cascade

The generation i 1+ cascade photon is a synchrotron photon
emitted at the event of pair creation by a photon of generation i.
Expressing b, ay , and i( ) g through ac and g from Equation (14)
we get for the characteristic energy of the next generation
photon

3

4
, 16i

a
i1 ( )( ) ( ) c=g g

+

where i( ) g and i 1( ) g
+ are energies of i’th and i 1( )+ ’th

generation photons. The photon energy degrades with each
successive generation of the cascade. This degradation
accelerates as the cascade proceeds through generations
because with the decrease of the photon energy ac increases,
see Figure 2.
The photon mfp in a constant magnetic field goes as

l a cµg g. For photon energies 104 g , when 10a c , the
mfp of successive generations increases by at least an order of
magnitude in each successive generation; therefore the
crudeness of our approximation for estimating the energy of
escaping photons, Equation (10), could affect only the last
cascade generation.
The rapid energy degradation results in a rather small

number of generations in polar cap cascades as the energy of
pair-producing photons rapidly reaches the threshold energy.
On the other hand, the number of emitted synchrotron photons
increases with the decrease of the energy of the parent photon,
see Figure 6; consequently synchrotron cascades can have quite
large multiplicities despite a small number of generations.
Each cascade photon creates 2 particles at the moment of

absorption, and particles are produced until i 1
,esc

( ) g g
+ . The

total number of particles generated in synchrotron cascades
initiated by a primary photon can be calculated by summation
over all generations of the number of pairs produced in each
cascade generation. The algorithm for this calculation is shown
in Appendix A, Algorithm 1. We will use this algorithm for
calculation of the polar cap cascade multiplicity after we
discuss CR, the radiation mechanism responsible for generating
the primary photons for synchrotron cascades in young
energetic pulsars.
Finally we wish to point out how the magnetic field strength

affects the multiplicity of the synchrotron cascade. From
discussions presented in Sections 3.2 and 4.1 it is evident that,
for the same energy of the primary photon, a higher magnetic
field strength results in (i) reducing the final energy of escaping
photons, therefore increasing cascade efficiency, and at the
same time (ii) in suppression of cascade efficiency by forcing a
smaller fraction of the photon energy to go into perpendicular
energy of the created pairs and so short-circuiting the cascade.

Figure 6. Number of synchrotron photons with the characteristic energy ,syng
emitted at each e eg  + - conversion: contours of nsyn as a function of
logarithms of the parent photon energy g and magnetic field strength B in
Gauss for 10 cmc

7r = .

6 The kinetic energy of pairs might be tapped by RICS cascade branches, see
Section 9.
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Therefore, there should be a “sweet spot” in magnetic field
strength where the synchrotron cascade is most efficient.

5. CR

In this section we discuss how primary particles emit
photons which “launch” the synchrotron cascade. As we
discussed above the most efficient process for supplying the
primary (generation 0) photons in young energetic pulsars
is CR.

5.1. Fraction of the Primary Particle Energy going into the
Cascade

Ultrarelativistic particles moving along curved magnetic
field lines emit electromagnetic radiation with power (Jack-
son 1975)

P
e

m c

c2

3
, 17

e
CR

2

5

2

c

2
4 ( )

r
= 

⎛
⎝⎜

⎞
⎠⎟

where PCR is normalized to m c se
2 ,  is the particle’s energy

normalized to mec
2; we do not distinguish between electrons

and positrons. Since we are treating the pair generation
problem separately from the problem of particle acceleration,
we consider cascades produced by particles injected in a region
with screened electric field, so that particles are not accelerated
and only lose energy to CR. The particle’s energy decreases
with time according to the equation of motion

d

dt
P . 18CR ( )


= -

Solving Equation (18) we get for the particle energy after it
travels the distance s from the injection point

s H s1 3 190
0 3

c
2

1 3

( )
( ) ( ) 



r
= + 



-⎡

⎣
⎢⎢

⎤

⎦
⎥⎥

(see also Harding 1981), where s is normalized to Rns,
0 is the

initial particle energy; constant H is defined as
H R r2 3 1.88 10 cmens

7 2( )= » ´ - , where r e m ce e
2 2= is

the classical electron radius.
The fraction CRz of the initial particle energy lost to CR after

a particle has traveled distance sCR is

s
s

1 . 20CR CR
CR

0
( )

( )
( )




z = - 



If the energy of these CR photons goes into creation of
electron–positron pairs, CRz gives the efficiency of the CR part
of the full cascade. The electric field in the acceleration zone
transforms electromagnetic energy into a particle’s kinetic
energy, which is then radiated as pair producing photons. Only
the photon’s energy can be divided in chunks carried by a large
number of pairs. The cascade will have high efficiency if (i)
primary particles have high energy, (ii) emit most of their
energy as photons, and (iii) inject these photons in the region
where the synchrotron cascade can work effectively, i.e., in a
region close to the NS which is smaller than the characteristic
scale of magnetic field variation LB.

In Figure 7 we plot the fraction of the primary particle
energy emitted as CR photons after the particle has traveled

distance s 1CR = . Shown are contours of sCR CR( )z as a function
of the initial particle energy 0 and the radius of curvature of
magnetic field lines cr . For smaller values of sCR the whole plot
would move to the right. CR is most efficient in transferring
particle energy into the cascade in the parameter space
corresponding to the lower right triangular region of Figure 7.
Going from the upper left (smaller 0, larger cr ) to the lower
right (larger 0, smaller cr ) on this plot, not only the particle
energy increases but also the fraction of the energy which can
go into the cascade.
For a certain range of 0 and cr the energy put into the

cascade by the primary particle grows faster than the energy of
that particle, i.e., the fraction of particle’s energy going into the
cascade increases stronger than linearly with the energy of the
particle. For more or less regular global magnetic fields, with

10 cmc
7r , the transition between effective and ineffective

CR cascades occurs at particle energies 107 ~ , and the
efficiency is very sensitive to the particle energy. In this
parameter range even a modest increase of the primary particle
energy can result in a large boost of the cascade multiplicity.

5.2. Energy of CR Photons and Critical Particle Energy

The characteristic energy of CR photons emitted by a
particle with the energy  is (Jackson 1975)

3

2
5.8 10 , 21,cr

c

c

3 3
c,7

1
,7

3 ( )  
r

r= » ´g 
-




where 10 cmc,7 c
7r rº and 10,7

7 º  . The number of CR
photons emitted by the particle while traveling distance ds
normalized to Rns is

d n

ds

R

c

P
22CR ns CR

,cr
( )

g


Each CR photon above the pair formation threshold will be a
primary photon for the synchrotron cascade discussed in

Figure 7. Fraction of the primary particle energy emitted as CR photons over
the distance s 1CR = : contours of CRz as a function of logarithms of the initial
particle energy 0 and the radius of curvature of magnetic field lines cr in cm.

8

The Astrophysical Journal, 810:144 (26pp), 2015 September 10 Timokhin & Harding



Section 4. The critical energy at which primary particles can
produce pair-creating CR photons can be calculated by
equating ,crg given by Equation (21) to the escape photon
energy ,escg from Equation (10). In Figure 8 we plot the critical
particle energy which could initiate pair production with CR
photons ,th for s 1esc = . Shown are contours of log ,th as a
function of the radius of curvature of magnetic field lines cr and
magnetic field strength B. Primary particles should have
energies 106  to be able to initiate pair production via CR.

5.3. Multiplicity of CR-synchrotron Cascade

The multiplicity of the the CR-synchrotron cascade—the
total number of particles produced by a single primary electron
or positron accelerated in the gap—can be computed by
multiplying the number of CR photons nCR, Equation (22), by
the number of particles produced in the synchrotron cascade
initiated by these photons nsyn, Equation (15), and integrating it
over the distance where CR can initiate a cascade

n
d n

ds
ds. 23

s

CR syn
0

syn
CRCR

( )‐ òk =

The actual algorithm we use to compute the total multiplicity is
the Algorithm 2 from Appendix A. Integration in Equation (23)
is done assuming constant values for B and cr , as discussed in
Section 3.1. In Figure 9 we plot CR syn‐k as a function of the

initial particle energy log 0 and magnetic field strength Blog
for three different radii of curvature of magnetic field lines

10 , 10 , 10 cmc
6 7 8r = assuming s s 1CR esc= = .

It is evident from these plots that in a dipolar magnetic field,
with 10 cmc

8r » , the maximum achievable multiplicity is
few 10CR syn

4
‐k ~ ´ even in cascades initiated by extremely

energetic primary particles. If the radius of curvature is an order
of magnitude less, a rather high multiplicity 10CR syn

5
‐ k

could be achieved in polar cap cascades for magnetic field

strength B ∼ 1012 G and particle energies 107  , parameters
quite realistic for young pulsars. For strongly non-dipolar
magnetic field, with 10 cmc

6r » the multiplicity can be
another order of magnitude higher few 10CR syn

6
‐k ~ ´ .

The properties of CR do not depend on the strength of the
magnetic field, therefore the effect of the magnetic field
strength on the multiplicity of CR-synchrotron cascade is due
to the synchrotron cascade and how many CR photons pair
produce. As discussed at the end of Section 4.3 there should be
an optimum magnetic field strength where the multiplicity is
the highest; the multiplicity decreases both for higher (due to
larger energy left in particle motion along magnetic field lines)
as well as lower magnetic field (due to increase of the energy of
escaping photons). This trend is clearly visible on all plots of
Figure 9. The highest cascade multiplicity is achieved for
magnetic field around B ∼ 1012 G. The value of this optimum
magnetic field grows slightly with increase of cr , but it stays
around few 10 G12~ ´ even for dipolar magnetic fields. This
is noteworthy in view of the fact that B ∼ 1012 G is the typical
value of magnetic field strength for normal pulsars. For any
given energy of the primary particle the decrease of the cascade
multiplicity towards stronger magnetic fields is faster than for
weaker fields.
The dependence of cascade multiplicity on the initial energy

of the primary particle is nonlinear. Let us consider what
happens when the initial particle energy 0 goes from the
highest to the lowest value (horizontal direction in plots of
Figure 9). For the highest values of 0 multiplicity decreases
uniformly, but then it drops by an order of magnitude in a
rather small range of 0 (for B 10 G12~ it happens around

100 6.3 ~ for 10c
6r = cm, 100 6.8 ~ for 10c

7r = cm, and
100 7.4 ~ for 10c

8r = cm). After about half a decade of 0
values the multiplicity drops again to 1, when no particles can
be produced (for B 10 G12~ it happens around 100 5.7 ~ for

10c
6r = cm, 100 6.3 ~ for 10c

7r = cm, and 100 7 ~ for
10c

8r = cm). The first effect is due to the decrease of the
efficiency of CR, discussed in Section 5.1. For lower initial
energies of the primary particle there is less energy available to
create pairs, not only because the particle energy is smaller, but
also due to smaller efficiency of CR in producing photons–the
primary particle keeps most of its energy, depositing only a
small fraction of it in the cascade zone. The drop in the
efficiency of CR CRz , where it becomes less than 10% (see
Figure 7) manifests in a rapid decrease of cascade multiplicity
—by an order of magnitude—on all plots of Figure 9 for
magnetic field strengths where the maximum multiplicity is
achieved. This drop in CR syn‐k is most prominent for
B 10 G12~ and is less pronounced for both higher and lower
magnetic field strengths due to lower efficiency of the cascade
discussed above. The second drop in CR syn‐k , towards 1, is due
to the threshold in pair formation—for those particle energies
CR photons have too low an energy to initiate a cascade. The
blue region on the plots of Figure 9 show the parameter space
where no particles can be produced by the CR-synchrotron
cascade. It does not mean, however, that no pairs can be
produced in the polar cap cascades for such primary particle
energies. Instead of CR, the primary photons for synchrotron
cascade will be produced by inverse Compton scattering (ICS)
of thermal photons emitted by the NS, however, those primary
photons will have much lower energies and multiplicities of
such cascades will be quite low (see Harding &
Muslimov 2002).

Figure 8. Critical particle energy above which it can emit pair-producing
photons via curvature radiation: contours of log ,th as a function of
logarithms of the radius of curvature of magnetic field lines cr in cm and
magnetic field strength B in Gauss for s 1esc = .
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We find it also instructive to compare the multiplicity of the
CR-synchrotron cascade with the theoretical upper limit on
cascade multiplicity maxk , given by Equation (1) in Section 2.
The ratio

24CR syn
CR syn

max
( )‐

‐z
k
k

=

can be considered as the efficiency of splitting the energy of the
primary particle into pairs. In Figure 10 we plot CR syn‐z for the
same values of parameters as CR syn‐k in Figure 9. Despite lower
multiplicity for smaller values of B, the cascade efficiency is
higher, i.e., more of the initial energy of the primary particle
goes into pair formation as opposed to the energy of escaping
photons and kinetic energy of pairs and primary particles. This
trend is discussed in Sections 4.1 and 5.1. It is interesting to
note that for B few 10 G11 ´ the cascade can be quite
efficient in splitting a noticeable fraction of primary particle

energy into pairs. For magnetic field ∼1012 G the fraction of
the primary particle’s energy going into pair production
saturates at ∼10%; this is the limiting efficiency of the highest
possible multiplicity cascade in a typical pulsar. The depen-
dence of CR syn‐z on 0 is similar to the dependence of CR syn‐k
on 0.

6. PARTICLE ACCELERATION

6.1. Overview of Particle Acceleration Regimes

In this section we will get an estimate for the energy of
primary cascade particles. In the following discussion we will
rely on results of self-consistent modeling of pair cascades by
Timokhin (2010) [T10] and Timokhin & Arons (2013) [TA13].
First, we give a brief overview of how particle acceleration
proceeds according to these simulations.

Figure 9. Multiplicity of CR-synchrotron cascade: contours of log CR syn‐k as a function of logarithms of the primary particle energy 0 and magnetic field strength B
in Gauss for three values of the radius of curvature of magnetic field lines 10 , 10 , 10 cmc

6 7 8r = . Assumed values for characteristic lengths: s s 1CR esc= = .

Figure 10. Efficiency of CR-synchrotron cascade as given by Equation (24): contours of CR syn‐z as a function of logarithms of the primary particle energy 0 and
magnetic field strength B in Gauss for three values of the radius of curvature of magnetic field lines 10 , 10 , 10 cmc

6 7 8r = . Assumed values for characteristic lengths:
s s 1CR esc= = .
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Whether and how the pair formation along given magnetic
field lines occurs depends on the ratio j jm GJ of the current
density required to support the twist of magnetic field lines in
the pulsar magnetosphere (e.g., Timokhin 2006; Bai &
Spitkovsky 2010), Bj c 4m ( )∣ ∣pº  ´ , to the local GJ
current density, j cGJ GJhº , where B PcGJh = is the GJ
charge density.

For the Ruderman & Sutherland (1975) cascade model,
where particles cannot be extracted from the NS surface,
effective particle acceleration and pair formation is possible for
almost all values of j jm GJ (T10). In the space charge limited
flow regime, first discussed by Arons & Scharlemann (1979),
pair formation is not possible if j j0 1m GJ< < , but is possible
for all other values of j jm GJ (TA13). Pair formation is always
non-stationary: an active phase when particles are accelerated
to ultrarelativistic energies and give rise to electron–positron
cascades—a burst of pair formation—is followed by a quiet
phase when recently generated dense electron–positron plasma
screens the electric field everywhere.

As pair plasma leaves the active region, it flows into the
magnetosphere, and later into the pulsar wind. When the
density of the pair plasma drops below the minimum density
necessary for screening of the electric field a gap appears—a
charge starved region where the electric field is very strong, of
the order of the vacuum electric field. To screen the electric
field, the plasma density must be high enough to provide both
the GJ charge density GJh and the imposed current density jm.
The transition between the region(s) still filled with plasma
(hereafter we call it “plasma tail”) and the gap is sharp—plasma
still capable of screening the electric field moves in bulk, its
density is close to the critical density. The plasma density drops
abruptly at the gap boundary; within the gap the particle
number density is much smaller than the critical density (see
Figures 22 and 23 in Section 10). The motion of the boundary
between the plasma filled region and the gap sets the gap’s
growth rate. Some particles enter the gap and are accelerated to
ultrarelativistic energies. The gap grows until the energy of
particles accelerated there becomes sufficient to start electron–
positron cascades and the cycle repeats. The gap is not
stationary; in almost all cases it moves as a whole—after its
growth has been terminated by newly created pairs its upper
and low boundaries are moving in the same direction. The gap
can move, keeping its size for a long time, or it might disappear
rather quickly. The details of gap behavior—where the gap
appears, what direction it moves, how fast it disappears—
depend on the ratio j jm GJ. However, despite these differences,
the way in which the highest energy particles are accelerated is

very similar in any regime which allows pair formation studied
in T10 and TA13. Namely, the size of the charge starved
region grows as the tail of pair plasma moves, the bulk velocity
of the tail v sets the rate of the gap expansion. Particles entering
the gap from the tail are accelerated in a larger and larger gap,
until they are able to produce pair-producing photons. The
place where these photons are absorbed and produce pairs is
the other boundary of the gap.

6.2. Energy of Primary Particles

In this section we obtain a quantitative estimate for the
maximum energy of accelerated particles using as an example
the case of the Ruderman–Sutherland (RS) cascade, when
particles cannot be supplied from the surface of the NS. As we
mentioned before, gap formation and particle acceleration in
the space charge limited flow regime, when pair creation is
allowed, is very similar to the RS case and estimates for particle
energies obtained in this section are applicable for the space
charge limited flow with j j 1m GJ > and j j 0m GJ < . The GJ
charge density is positive and we consider the case when the
ratio j j 0m GJ > . In Figure 11 we show a schematic picture of
how particles are accelerated in this cascade. On the top of each
figure we show the electric field in the accelerating region and
on the bottom a schematic representation of plasma motion in
and around the gap; plot (a) corresponds to the time when the
electric field screening has just started, plot (b) shows a well-
developed gap moving into the magnetosphere. These sche-
matic plots illustrate results of actual simulations of RS
cascades shown in Figures 3, 4, 11, and 13 in T10.
At the beginning of the burst of pair formation, the gap

appears at the NS surface and its upper boundary is the “tail” of
plasma left from the previous burst of pair formation, where the
particle number density is still high enough to screen the
electric field (region I in Figure 11). Electrons and positrons in
this tail are trapped in electrostatic oscillations and the bulk
velocity of this tail v is sub-relativistic, but for large current
densities (around or greater than jGJ) it is quite close to c.
Electrons from this tail which get to the gap boundary are
pulled into the gap and are accelerated toward the NS. As the
tail moves, the gap grows; the current and charge density in the
gap is due to the flux of electrons from the tail and so it remains
constant within the gap. The gap growth is stopped when
electrons reach an energy high enough to produce pair-creating
photons. This first-generation of pairs start screening the
electric field—electrons move toward the NS and positrons are
accelerated toward the magnetosphere and start producing pair

Figure 11. Schematic representation of gap formation and evolution for cascades in Ruderman–Sutherland regime with j j 0m GJ > . See the text for explanation.
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creating photons as well (region II in Figure 11(a)). In
numerical simulations (T10) the first-generation positrons
moving toward the magnetosphere have approximately the
same energies as the primary electrons which initiated the
discharge. Because those positrons are ultrarelativistic they
practically co-move with the photons and so new pairs are
injected close to their parent particles making a blob of pair
plasma moving into the magnetosphere (region IIa in
Figure 11(b)).7 This blob is the lower boundary of the
accelerating gap, and the gap exists until this blob catches up
with the tail from the previous pair formation cycle. For large
current densities this can take a while as v is close to c. Plasma
leaking from the blob forms the new tail (region IIb on
Figure 11(b)).

In the discharge described above primary particles are
moving in both directions and initiate cascades toward the NS
(electrons) and the magnetosphere (positrons). As the dis-
charges happen close to the NS surface, the cascade can fully
develop only in the direction of the magnetosphere—particles
moving toward NS slam onto the star’s surface before they can
produce a lot of pairs. For RS discharges the primary,
generation 0, particles initiating the full cascade in Figure 1
are positrons in region IIa in Figure 11(b). As we mentioned
above, the energy of those positrons is very close to the energy
of the primary electrons and here, for the sake of simplicity, we
provide estimates only for the energy of primary electrons.8

The evolution of the electric field in any given point x and
moment of time t is given by (see, e.g., Equation (1) in TA13)

E

t
x t j x t j, 4 , 4 , 25m( ) ȷ( ) ( ) ˜ ( )p p

¶
¶

= - - º -

j is the actual current density along a given magnetic field line
and jm is the current density imposed by the magnetosphere.
The difference j jmȷ̃ º - in the gap remains constant. When
the upper boundary of the gap moves with the constant speed v
this equation can be integrated to get the electric field in the gap

E x t E x t
x x

v
t t, , 4 4 . 260 0

0
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Where E x t,0 0( ) is the electric field within the gap at the
moment t0 at the point x0. If we assume that the gap boundary
is at x0 at the moment t0, then E x t, 00 0( ) = .

Electrons enter the gap from above and are quickly
accelerated by the strong electric field and move with
relativistic speed practically from the moment they leave the
plasma tail. If a particle enters the gap at t0 (in point x0) its
coordinate is x x c t t0 0( )= - - , substituting x into
Equation (26) the electric field seen by that particle is given by
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In the last step in Equation (27) we denote with l x x0∣ ∣º - 
the distance traveled by the particle in the gap and introduce jx

defined as
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where jGJ
0 is the GJ current density in an aligned rotator

j c
B

P
. 29GJ

0
GJ
0 ( )hº =

jx is a factor which shows how stronger/weaker the electric
field in the gap is compared to the situation of a static vacuum
gap in an (anti-)aligned rotator, like the one considered by
Ruderman & Sutherland (1975). v const is a good
approximation to the numerical results and so constjx  . In
cascades along magnetic field lines where jm is close to the
local value of jGJ in an aligned rotator 2jx ~ , for the same
situation in a pulsar with inclination angle of 60, 1jx ~ .
For energy losses dominated by CR, free acceleration is a

good approximation for B 10 G11 (see Appendix B). If
radiation losses are negligible, the particle’s equation of motion
is

dp

dt
eE, 30( )= -

where p mcg= is particle’s momentum. In terms of the
distance traveled by the particle in the gap l c t t0( )= - with
E given by Equation (27), particle equation of motion can be
written as
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Integrating this equation and expressing jGJ through pulsar
parameters we get for particle energy
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The distance the primary particle travels in the region of
unscreened electric field lgap—the size of the gap as seen by the
moving particle—is the sum of the distance the particle travels
before emitting pair-producing photons terminating the gap
l ,gap

e
 and the distance these protons travel until the absorption
point l ,gapg

l l l . 33gap ,gap
e

,gap ( )= + g

For any given particle, the larger the distance l e
 the particle

travels to the emission point, the higher the particle energy and
the energy of CR photons it emits, and so the smaller is the
distance traveled by the photon until the absorption point lg.
The distance the particle travels in the gap lgap is the minimum
value of l l le= + g because once the first pairs are injected the
avalanche of pair creation will lead to screening of the electric
field. The photon mean free path lg can be estimated from
Equation (3) as

l
b

2 . 34a
c ( )


c
r

=g
g

Photon energy g depends on the particle energy  which
depends on l e

 according to Equation (32), and so lg is a
function of l e

. lgap can be found by minimizing l l le= + g

7 See also Figure 22 in Section 10 where we show a snapshot from numerical
simulations of the cascade corresponding to the stage shown in Figure 11(b).
8 The reason for both kinds of primary particles, electrons and positrons,
acquiring almost the same energies is that the potential drop experienced by
each of them is regulated by the process of pair formation, rather than by the
details of their acceleration. We did analytical estimates for the final energies of
the first-generation positron based on the model presented in this section; the
difference between energies of the primary electrons and first-generation
positrons in the frame of the model is about 2%.
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using l e
 as an independent variable: lgap is the value of l which

satisfies dl dl 0e = , l ,gapg and l ,gap
e
 are the values of lg and l e


where l reaches its minimal value. Using Equation (33) we can
write an equation for l ,gapg

dl

dl
1. 35

,gap

,gap
e ( )= -g



If the photon energy depends on l e
 as l e( ) µg

a
 , then

Equation (35) is reduced to

l l , 36,gap
e

,gap ( )a= g

where l ,gapg is expressed in terms of l ,gap
e
 using Equation (34).

lgap is then given by

l l
1

. 37gap ,gap
e ( )

a
a

=
+



The final energy of the primary particle is given by
Equation (32) with l lgap= . Please note that because the
gap moves, the actual size of the gap (see Figure 11(a)) is

h
v

c
l1 . 38gap gap ( )= +⎜ ⎟⎛

⎝
⎞
⎠

The energy of the CR photons depends on the particle
energy as 3  (Equation (21)), the particle energy depends on l
as l 2

 (Equation (32)), hence, l e 6( ) µg  and 6a = . Substitut-
ing expression for  (Equation (32)) into the expression for
CR photon energy g (Equation (21)), the latter into
Equation (34), and the resulting expression for lg into
Equation (36) with 6a = after algebraic transformations we
get the following expression for l ,gap

e


l
B c

P B . 39
q

a j,gap
e

4
c
2 3

3

1 7

1 7 3 7
c
2 7 3 7 4 7 ( )

p
c x r=

- -
⎛

⎝
⎜⎜

⎞
⎠
⎟⎟

The size of the gap as seen by the moving particle according to
Equation (37) is

l P B2 10 cm, 40a jgap
4 1 7 3 7

c,7
2 7 3 7

12
4 7 ( )c x r´ - -

where B B 10 G12
12º and 10 cmc,7 c

7r rº . Substituting
l lgap= into Equation (32) we get for the final energy of
particles accelerated in the gap9

B

c
P B

P B

49

18

5 10 . 41

q
a j

a j

,acc
c
3

1 7
2 7 1 7

c
4 7 1 7 1 7

7 2 7 1 7
c,7
4 7 1 7

12
1 7 ( )


p

c x r

c x r

=

´


- -

- -





⎛
⎝⎜

⎞
⎠⎟

The dependence of the primary particles energy on pulsar
period P, filling factor jx and the strength of the magnetic field
B is very weak, the only substantial dependence is on the radius
of curvature of magnetic field lines. The reason for this is the
strong dependence of CR photon energy on the energy of
emitting particles 3 µg , Equation (21). Changes in the
threshold energy of pair producing photons which can stop the

gap growth cause only modest variation of the energy of
primary particles, which explicitly depends on P, jx , and B, but
not on cr , Equation (32). The energy of pair producing photons
sets the energy of accelerated particles, and in pulsars with a
strong accelerating electric field the gap will be smaller than in
pulsars with a weaker accelerating field. In Figure 12 we plot
the energy of particles ,acc accelerated in the gap of a pulsar
with P = 33 ms as a function of the radius of curvature of
magnetic field lines cr and magnetic field strength B, assuming

2jx = and 1 7ac = . The value 1 7ac » corresponds to ac of
CR photons emitted by relativistic particles with

2.5 100 7 = ´ in a magnetic field B 10 G12= with
10c

7r = cm, this is a good estimate for ac in Equation (41)
for young pulsars as the dependence on ac is very weak. This
plot clearly illustrates the dependence of ,acc on B and cr —

weaker magnetic field and/or larger radius of curvature
requires larger photon energies for terminating gap growth,
and so the energy of the primary particles is larger.
We derived Equation (41) under the following assumptions:

(i) particles are accelerated freely, i.e., radiation reaction can be
neglected, (ii) the length of the gap is much smaller that the
polar cap radius, so that a one dimensional approximation can
be used, (iii) the magnetic field is B B0.2 8.8 10q

12 » ´ G
so that the opacity to Bg pair creation is described by
Equation (2). Constraints on the pulsar parameters (i) and (ii)
are derived in Appendix B and Appendix C correspondingly.
Plotted on the PṖ diagram, Figure 13, these restrictions select
the range of pulsar period and period derivatives—shown as
yellow region—where all three assumptions are valid. In this
figure, the one-dimensional approximation (ii) is valid to the
left of the solid line, given by Equation (59), the approximation
(i) of free acceleration above the dot-dashed line, given by
Equation (54), and pulsars with B B0.2 q< are below the dotted
line. We see that most of young normal pulsars, including
gamma-ray pulsars from the Fermi second pulsar catalog, fall
in this range.

Figure 12. Primary particle energy: contours of log ,acc as a function of
logarithms of the radius of curvature of magnetic field lines cr in cm and
magnetic field strength B in Gauss. We used the following values for gap
parameters P = 33 ms, 2jx = and 1 7ac = .

9 Our expression for the energy of primary particles has the same dependence
on cr , P, and B as the expression for the potential drop in the gap derived by
Ruderman & Sutherland (1975), their Equation (23). This is to be expected as
in both cases particles are accelerated by the electric field which grows linearly
with the distance and the size of the gap is regulated by absorption on curvature
photons in magnetic field. The difference is in the presence of factor jx and a
different numerical factor.
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7. CASCADE MULTIPLICITY PER PRIMARY PARTICLE:
SEMI-ANALYTICAL MODEL

We now combine the results of Section 5.3 concerning the
cascade multiplicity for a fixed energy of the primary particle,
and of Section 6.2 concerning the energy of primary particles
accelerated in the gap with given parameters P, jx , strength B,
and cr . The multiplicity of CR-synchrotron cascades depends
on the energy of the primary particle , magnetic field B, and
radius of curvature of magnetic field lines cr . The only
significant dependence of the energy of accelerated particles 
in young pulsars is on the radius of curvature of magnetic field
lines cr ; the dependence on P, jx , and B is very weak, see
Equation (41). Therefore, when particle acceleration is taken
into account, the overall cascade multiplicity κ can depend
substantially only on B and cr .

In CR-synchrotron cascade changes in  and cr change κ in
opposite directions—for higher  multiplicity is higher, for
larger cr multiplicity is lower. But the energy of the primary
particles accelerated in PCs of young pulsars  is higher for
larger radii of curvature of magnetic field lines cr . Hence,
increasing cr lowers the cascade multiplicity for a fixed , but
at the same time increases , which partially compensates the
decrease of cascade multiplicity. Therefore, the final cascade
multiplicity should have a rather weak dependence on cr , which
leaves the magnetic field strength B the only parameter
significantly affecting the multiplicity of strong cascades in
PCs of young pulsars.

In Figure 14 we show the final multiplicity as a function of
magnetic field strength and radius of curvature of magnetic
field lines. We present plots for three sets of parameters P and

jx which differ by ∼ an order of magnitude. As expected, both
pulsar period as well as the filling parameter jx have a very
small effect on the final multiplicity. For the range of cr and B
in Figure 14, the CR-synchrotron cascade has the highest
efficiency—primary particles lose most of their energy as CR

photons within the distance s RCR ns= where the cascade is
possible—and higher multiplicities cannot be achieved.
According to Figure 14 the cascade multiplicity scales with

cr roughly as c( )k rµ a, with 1 2a . The interval
10 , 10 cm6 8[ ] represents the most reasonable values of cr for
any global magnetic field configuration in the pulsar polar cap.
For very different magnetic field configurations—a highly
multipolar field with 10 cmc

6r ~ versus a dipole field with
10 cmc

8r ~ —the multiplicity differs by less than an order of
magnitude. The dependence of κ on the magnetic field is
stronger, with the maximum reached near B ∼ 1012 G.
It is a remarkable fact that the multiplicity of the most

efficient cascades is sensitive mostly to the strength of the
magnetic field. The multiplicity is not very sensitive to cr and
for typical pulsar magnetic field of 1012 G is around 105. For
fixed B the total pair yield—the total number of particles
injected into the magnetosphere—depends then only on the
flux of primary particles. This is true for pulsars where the
accelerating potential is regulated by pair production and where
cascade operate in CR-synchrotron regime have high
efficiency.

8. CASCADE MULTIPLICITY PER PRIMARY PARTICLE:
NUMERICAL SIMULATIONS

In Sections 3–7 we developed a semi-analytical model of
strong polar cap cascades. In order to verify the key
assumptions and conclusions of this model we have performed
numerical simulations of time-dependent polar cap pair
cascades. Because such numerical simulations are quite time
consuming we limited ourselves to the case of a young pulsar
with parameters similar to the Crab pulsar (P= 33 ms) and
magnetic field strength B and radius of curvature of magnetic
field lines cr having values resulting in high multiplicity. Our
goal was to show that the main assumptions and conclusions of
our analysis of polar cap cascades are realistic. More extensive
self-consistent numerical studies of the polar cap cascades will
be done in subsequent papers.
As outlined in Section 6.1, particles are quickly accelerated

in the gap which is much smaller than the typical distance over
which the full cascade develops. The primary pair producing
particles are moving most of the time in the region with
screened electric field. If the primary particle energies are
known, the full cascade can be modeled using traditional
Monte-Carlo techniques (Daugherty & Harding 1982); to
obtain the energies of primary particles initiating the CR-
synchrotron cascade a self-consistent model of the cascade
(Timokhin 2010; Timokhin & Arons 2013) is necessary.
We have performed numerical simulations of time-depen-

dent polar cap pair cascades in a two-step process. In the first
step, we use a hybrid Particle-in-Cell/Monte Carlo (PIC/MC)
code PAMINA (PIC And Monte-Carlo code for cascades IN
Astrophysics) to simulate the initial self-consistent electric field
generation, particle acceleration and electric field screening
near the NS to obtain the distribution functions of the electrons
and positrons in the acceleration/screening region. This code
includes only CR of the particles and first generation of pairs
needed to screen the gap, and so does not follow the full
synchrotron cascade. The details of this code are described in
Timokhin (2010), Timokhin & Arons (2013).
In the second step, we use another code to simulate the full

pair cascade in the pulsar dipole field above the PC, including
both CR of primary particles and synchrotron radiation of pairs.

Figure 13. PṖ diagram with the yellow area showing the range of parameters
where approximation for particle acceleration used in this paper is applicable,
see text for description. Pulsars from ATNF catalog Manchester et al. (2005),
http://www.atnf.csiro.au/research/pulsar/psrcat, are shown by black dots,
γ-ray pulsars from the second Fermi catalog (Abdo et al. 2013) by red dots.
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This code, based on the calculation described in detail in
Harding & Muslimov (2011) [HM11], is a Monte-Carlo
simulation of the electron–positron pair cascade generated
above a PC by accelerated particles in the region of screened
electric field. Although HM11 included a steady particle
acceleration component, this component is not used in the
present calculation. We therefore assume that the particles and
the further pairs they create do not undergo any acceleration.
This code takes as input the distribution functions of
accelerated particles output by the time-dependent PAMINA
code that are moving away from the NS surface and simulates
the combined cascade from all of the particles. Although our
setup is capable of calculating full cascades generated by
primary particles with arbitrary distribution functions, in the
simulations described in this section we used a monochromatic
injection of primary particles. On the one hand, the energy
distribution of the most energetic primary particles which
produce the bulk of the pairs in many cases is close to
monochromatic (see, e.g., Section 10, Figure 23), and on the
other hand this enables us to compare numerical simulations
with predictions of our semi-analytical theory. The energy of
the primaries was calculated from the self-consistent model
however.

The MC code first follows the primary particle in discrete
steps along the magnetic field line at magnetic colatitude θ,
starting from the location x0 and particle energy 0 at time tpeak
at the peak of the pair production cycle in PAMINA code,
computing its CR. The steps xD are set to the minimum of a
fraction 0.1 of a NS radius and the distance over which the
particle would lose 1% of its energy to CR. Dividing the CR
spectrum at each step into logarithmic energy intervals, a
representative photon from each energy interval is followed
through the curved magnetic field until its point of pair
production (determined as a random fraction of the mean-free
path). The number of CR photons in each energy bin, nCR, is
determined by the energy loss rate and average energy in that
bin. The pairs produced by the photon, or the escaping photon
number, is then weighted by nCR. The created pair is assumed
to have the same direction and half the energy of the parent
photon. Although the CR photons are radiated parallel to the
magnetic field, they must acquire a finite angle to the field
before producing a pair, so the created pairs have finite pitch
angles at birth. Each member of the pair emits a sequence of
cyclotron and/or synchrotron photons, starting from its initial
Landau state until it reaches the ground state, assuming the
position of the particle remains fixed (given the very rapid
radiation rate). As described in HM11, when the pair Landau
state is larger than 20, the asymptotic form of the quantum
synchrotron rate (Sokolov & Ternov 1968) is used to determine
the photon emission energy and final Landau state. When the
Landau state is below 20, the full QED cyclotron transition rate
(Harding & Preece 1987) is used. At large distances above the
NS surface, when the magnetic field drops below B0.002 q, we
short-cut the individual emission sequence and use an
expression for the spectrum of synchrotron emission for an
electron that loses all of its perpendicular energy (Tade-
maru 1973). Each emitted photon is then propagated through
the magnetic field from its emission point until it pair produces
or escapes. The next generation of pairs are then followed
through their synchrotron/cyclotron emission sequence. By use
of a recursive routine that is called upon the emission of each
photon, we can follow an arbitrary number of pair generations.

The cascade continues until all photons from each branch have
escaped. As each member of each created pair completes its
synchrotron emission, its ground-state energy, position, and
generation number are stored in a pair table. As each photon
either pair produces or escapes, its energy, generation, and
position of pair creation or escape are stored in tables for
absorbed and escaping photons. The photons and pairs from all
accelerated particles are summed together to produce the
complete cascade portrait at that time step.
The NS magnetic field in the MC code described above is a

distorted dipole with an azimuthal (f) component which is off-
set from the center of the NS. The magnetic field is given by

B
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where B0 is the surface magnetic field strength at the magnetic
pole, r is the radial coordinate, a cos 0( )e f f= - is the
parameter characterizing the distortion of polar field lines, and

0f is the magnetic azimuthal angle defining the meridional
plane of the offset PC. The parameter ε sets the magnitude and
the parameter 0f sets the direction of asymmetry of this
azimuthal component. Setting 0e = gives a pure dipole field
structure, while a non-zero value of ε produces an effective
offset of the PC from the dipole axis in the direction specified
by 0f . For non-zero ε, the radius of curvature of the magnetic
field lines is smaller than dipole in the direction of the offset
and larger than dipole in the direction opposite to the direction
of offset. This particular parametric form for the magnetic field
was used in simulations of stationary cascades in HM11, it was
chosen to account for distortion of the shape of the PC caused
by currents flowing in pulsar magnetosphere. Such azimuthal
asymmetries in the near-surface magnetic field is caused by the
sweepback of the field lines near the light cylinder due to
retardation (e.g., Dyks & Harding 2004) and currents (e.g.,
Timokhin 2006; Bai & Spitkovsky 2010; Kalapotharakos
et al. 2014) or, additionally, by asymmetric currents in the NS.
We did not perform a systematic study of all parameter space

with our numerical simulations, which will be done elsewhere,
with our numerical simulations we test assumptions and
predictions of our semi-analytic cascade model. Any form of
magnetic field with adjustable radius of curvature of magnetic
field lines would serve our purposes, but using the magnetic
field given by Equation (42) allows comparison with the most
recent simulations in the frame of the previous-generation
cascade models HM11. We explored cases of pair cascades
both for pure dipole fields and for azimuthally distorted fields.
Multiplicities obtained from the numerical simulations agree
reasonably well with the semi-analytic model, within a factor of
a few. As an example we describe in detail results of particular
simulations with pulsar parameters yielding high multiplicity
for a cascade at the peak of the pair creation cycle. The
magnetic field is B 1012= G and is moderately distorted, with
the offset 0.4e = resulting in the radius of curvature of
magnetic field lines near the NS 8.8 10 cmc

6r = ´ . The initial
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energy of primary particles from PAMINA simulations is
2.3 100 7 = ´ .

In Figures 15 and 16 we show a set of five plots which we
call “cascade portraits.” These plots illustrate different aspects
of the cascade development by showing moments of the photon
or particle distribution function f x E,( ). The top panel shows
the number of particles produced in each energy and distance
bin

dN x E f x E dx dE, , , 43( ) ( ) ( )=

as a 2D color map. The number of particles is color coded in
logarithmic scale according to the color bar on the right. The
middle left plot shows the energy distribution E f x E,i( ) of
particles produced at four distances x i, 1 ... 4i = ; different line
styles correspond to different distances according to the left
plot legend. These spectra are essentially cross-sections of the
map of dN x E,( ) (multiplied by particle energy) along four
lines shown in the plot for dN x E,( ). The bottom left plot
shows the energy distribution of all particles produced in the
cascade (dN x E,( ) integrated along x direction and multiplied
by E)

E f E E dx f x E, . 44
x

0

max

( )( ) ˜ ˜ ( )ò=

In this and the following plots, colored lines show contributions
of different cascade generations; lines are color-coded accord-
ing to the right plot legend. The middle right plot shows the
differential pair production rate—number of particles produced
in a distance bin (dN x E,( ) integrated along the E direction)

dN x dx f x E dE, . 45
E

0

max

( ) ( ) ( )ò=

The bottom right plot shows the cumulative pair production
rate—total number of particles produced up to the distance x

N x dx f x E dE, . 46
x E

0 0

max

( )( ) ˜ ˜ ( ) ò ò=

Figure 15 shows the cascade portrait of the pairs (we do not
differentiate between electrons and positrons). The cascade
extends to about R6 ns~ , where it dies out completely as the

magnetic field strength and the accelerated particle energy
decrease. The pair number grows very quickly, within a few
tenths of a NS radius, and then saturates at 7.4 104k » ´ . The
majority of pairs are produced at distances Rns< (see plot for
N x( ) ), which supports the assumption about the length of the
cascade zone being Rns~ made in Section 3.1. The number of
pair generations is highest at Rns , up to six in this case.10 The
occurrence of most of the cascade generations at distances up to

Rns~ is the evidence that the photon mfp in a strong cascade is
indeed small, l Rnsg  , so that the cascade initiated by any
given particle goes through several generations within the
distance Rns~ . The large extent of the cascade zone relative to
lg is due to continuous injection of pair-producing CR photons
(see the blue line in the plot of dN(x); generation 0 pairs are
produced by CR photons). The largest contribution to pair
multiplicity in this case comes from generation 1, pairs created
by the first synchrotron photons (see plots for dN(x) and
N x( )) . In our simulations for different pulsar parameters,
contributions of generation 1 and 2 to the pair multiplicity
sometimes become comparable; for weaker cascades the
relative contribution of generation 0 is higher than in this
case, however we did not see generations 3 and higher
producing the majority of pairs. The number of cascade
generations is not very large in any of our simulations (several
at most), but in each generations high numbers of pair
producing photons are emitted which results in high
multiplicity.
The energy of created pairs decrease with distance (see plots

for dN x E,( ) and E f x E,i( )), mostly because of energy losses
of primary particles which results in lower energy CR photons.
The pair spectrum extends down to a few mc2, since the
cascade is very efficient at converting initial pair energy into
more photons (and pairs). Degradation of pair energies through
cascade generations discussed in Section 4.3 is clearly visible
on the plot for E f E( )—the maximum pair energy system-
atically decreases with cascade generations at all distances.

Figure 14. Multiplicity of polar cap cascades: contours of log k as a function of logarithms of curvature of magnetic field lines cr in cm and magnetic field strength B
in Gauss for three sets of the gap parameters P ms , j( [ ] )x : 33, 2( ), 33, 0.25( ), 330, 2( ). In all cases we used 1 7ac = for calculation of the energy of primary particles.

10 There are too few pairs produced in the 6th generation to show in the plot;
curves corresponding to this generation are below the lower limit of all plots in
Figure 15; this generation shows in the portrait for photons, Figure 16.
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Figure 16 show the portrait of photons escaping the cascade.
Photon generation 0 is CR while the higher generations ( 1 )
are synchrotron/cyclotron radiation. Although the highest
energy photons are produced nearest the NS surface, these
photons are absorbed by pair production attenuation so that the
spectra at the lowest altitudes show sharp cutoffs near mc100 2.
This cutoff is clearly visible in the plot for Ef x E,i( ) for
x R0.151 ns= shown by a dashed line. In the plot for dN x E,( )
the cutoff is evident as a sharp horizontal boundary of the
colored region for x R0.16 ns . The escaping photon energies

increase with distance from the NS surface, as the magneto-
sphere becomes more transparent. The highest escaping photon
energies are produced near the end of the cascade, at around
4 NS radii. The highest energy photons escaping the cascade
are CR photons (blue line in the plot for Ef(E)). Synchrotron
radiation is emitted by pairs right after their creation, so that the
pair formation and synchrotron radiation end at the same
distance—in the plot for dN(x), the number of photons in each
generation drops at large distances in accordance with the drop
of number of injected pairs shown on a similar plot in

Figure 15. Cascade portrait of electron–positron pairs. Top panel: number of particles produced in each energy and distance bin dN x E,( ) color coded in logarithmic
scale according to the colorbar on the right. Middle left: E f x E,i( )—energy distribution of particles produced at four distances x i, 1 ... 4i = ; different line styles
correspond to different distances according to the left plot legend. Bottom left: E f E( )—energy distribution of all particles produced in the cascade. Middle right: dN
(x)—differential pair production rate—number of particles produced in a distance bin. Bottom right: N x( ) —total number of particles produced up to the distance x.
Color lines in plots for E f E( ), dN(x), and N x( ) show contributions of different cascade generations, lines are color-coded according to the right plot legend. Thick
black lines show contributions of all cascade generations. x is the distance from the NS normalized to NS radius Rns and E is particle energy normalized to mec

2.
Particle number density is normalized to nGJ. Parameters of this simulation: pulsar period P = 33 ms; the magnetic field in the PC has B 10 G0

12= and
8.8 10 cmc

6r = ´ ; initial energy of primary particles 2.3 100 7 = ´ .
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Figure 15. Above R4 ns~ the emitted CR photon energies drop
as the primary particles continue to lose energy. The spectrum
of escaping photons also broadens at the lower end because, as
the magnetic field decreases, so does the cyclotron energy
which sets the lower limit of the synchrotron spectrum. Thus
the lowest and the highest energy escaping photons are
produced at the largest distances from then NS, cf. spectra at
different xi in the plot for Ef x E,i( ). The bulk of high energy
emission from the PC cascade comes from synchrotron
radiation of pairs in generations 1, 2, and 3.

Quantitatively, our semi-analytic theory compares with this
particular numerical simulation as follows. For pulsar para-
meters used in this simulation, the energy of primary particles
according to Equation (41) should be 3.6 100,a 7 » ´ , which
is 1.6» times larger than the result obtained from numerical
simulations with PAMINA code 2.3 100,num 7 » ´ . For the

multiplicity of the CR-synchrotron cascade started by primary
particles with monochromatic energies 0,num , the semi-analytic
model gives 1.56 10CR syn

a 5
‐k » ´ , from Equation (23), which

is also about 2 times higher than the value obtained in
numerical simulations 7.4 10num 4k » ´ . The combined
model from Section 7, which uses the analytic model for
particle acceleration as an input for the semi-analytic model of
CR-synchrotron cascade, predicts for the multiplicity

2.9 10a 5k » ´ , see Figure 14, which is 4» times larger than
the multiplicity from numerical simulations. The discrepancy
with the semi-analytic model for several other numerical
simulations we performed with different parameters is of the
same order. We attribute this discrepancy mostly to the
approximation of constant magnetic field—in the numerical
simulations, where B and cr (which is derived from B) depend
on the distance according to Equation (42), photon absorption

Figure 16. Cascade portrait of escaping photons for the same cascade as in Figure 15. Notations and normalizations are the same as in Figure 15.
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decreases and becomes less efficient with the distance. We
think that for such a simple model the agreement with the
numerical simulations is reasonable and the model can be used
for estimates of multiplicities in young energetic pulsars.

9. RICS

Another emission mechanism for relativistic particles
besides curvature and synchrotron radiation is ICS. In strong
magnetic fields typical for pulsar PCs, ICS can occur in the
resonant regime, when the photon energy in the electron’s rest
frame is equal to the cyclotron energy. The cross-section for
scattering of such photons is greatly enhanced compared to that
of non-magnetic scattering. It has been noted that resonant ICS
(RICS) with the soft thermal photons from the NS surface is
important for high-energy emission from pulsar PCs (Stur-
ner 1995; Zhang & Harding 2000) and can be important in the
development of polar cap cascades because for quite a wide
range of pulsar parameters, scattered photons can be above
pair-formation threshold (e.g., Sturner et al. 1995; Zhang &
Harding 2000). In this section we argue that although RICS can
play a role in the development of polar cap cascades, it never
becomes the dominant source for pair multiplicity and,
therefore, considering only CR-synchrotron cascades provides
adequate estimates for pair multiplicity in strong cascades of
normal pulsars. A detailed study of the role of RICS in polar
cap cascades will be presented in a subsequent paper.

First, let us consider the efficiency of RICS in transforming
particle kinetic energy into radiation. The distance over which a
particle loses most of its energy to RICS is given by (Dermer
1990; Sturner 1995; Zhang & Harding 2000):
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where T6 is the temperature of the NS surface in units of 106 K,
B12 is the magnetic field strength in units of 1012G, and

coss sm q= , where sq is the angle between the momenta of the
scattering photon and particle in the lab frame. If the NS is
young, its surface temperature comes mostly from cooling and
should be about 106 K. It emits X-ray photons necessary for
RICS from the whole surface, and for particles at a distance
comparable to the NS radius the range of sm is quite large. For
older NS, with full surface temperatures below few 10 K5´
only the polar cap region, heated by the backflow of accelerated
particles up to few 106~ ´ K (e.g., Harding & Musli-
mov 2001, 2002), can emit enough photons for RICS to
become important. In the latter case when the particle reaches a
distance comparable to the width of the polar cap
r P1.4 10 cmpc

4´ , where P is pulsar period in second,
the range of sm gets very small and photons quickly get out of
resonance. So, for young NSs RICS is an important radiation
process if RRICS nsl ~ ; for old NSs this condition changes to

rRICS pcl ~ .
In Figure 17 we plot RICSl as a function of particle energy 

and magnetic field B, for T 10 K6= and 0.5sm = . It is evident
from this plot that primary particles, with 106 > , lose a
negligible amount of their energy via RICS, and CR is the
dominant emission mechanism for generation 0 of strong
cascades. For cold NSs, RICS of photons from heated PCs

might be an important emission mechanism only for a very
narrow energy range of low energetic particles, in one of the
later cascade generation—the parameter space between two

10RICS
4l = contours is rather small—and for most values of B

the scattered photons will be below pair formation threshold.
Hence, RICS can be completely neglected in strong polar cap
cascades of cold NSs. For hot NSs RICS becomes an important
emission mechanism for a wide range of moderate particle
energies 104 < —the energy range between contours of

10RICS
6l = in Figure 17 is quite wide. In the latter case, the

diagram for physical processes in a strong polar cap cascade
can have the general form shown in Figure 18, with RICS
photons in some cases carrying non-negligible energy starting
from cascade generation 1. The extension of the semi-analytical
analysis of CR-synchrotron cascade developed in Sections 3–7
to the whole cascade taking into account multiple cascade
branches is not straightforward and we postpone it to future
publications. Here we will make rough estimates of the
contribution of RICS cascade branches to the multiplicity of
the whole cascade.
Let us now discuss the efficiency of RICS cascade branches

in splitting the available energy into pairs. The energy of
photons after scattering by particles of energy  in the RICS
regime is (e.g., Zhang & Harding 2000)

b2 , 48,RICS ,F ( ) =g 

where ,F , given by Equation (12), is the kinetic energy of a
particle moving along a magnetic field line—the final energy of
freshly created pairs after they emit all perpendicular to B
energy via synchrotron radiation. Using Equations (48), (12)
together with Equation (21) for the energy of CR photons and
Equation (41) for the energy of the primary particle, we get an
upper limit on the energy of the generation 1 RICS photons–the
highest energy RICS photons. In Figure 19 we plot the ratio of
the energy of generation 1 RICS photons ,RICS

1( ) g to the energy
of photons escaping from the cascade zone esc as a function of

Figure 17. Distance (in cm) over which a particle loses its energy via resonant
inverse Compton scattering. Contours of log RICSl are plotted as a function of
logarithms of particle energy  and magnetic field B in Gauss for a NS surface
temperature T 10 K6= and 0.5sm = .
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the radius of curvature of magnetic field lines and the strength
of the magnetic field B. It is easy to see that for magnetic fields
weaker than a few ×1011 G, even the highest energy RICS
photons are not capable of producing electron–positron pairs.

For stronger magnetic fields, however, RICS photons do
contribute to pair multiplicity.
The characteristic energy of RICS photons in terms of the

energy of the previous generation photon can be obtained by
substituting ,F into Equation (48)

b
b

1 . 49i i a
,RICS

1
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This equation describes the energy degradation in each cascade
generation for the RICS process. In Figure 20 we plot the ratio
of the characteristic energies of synchrotron and RICS photons
(given by Equations (49) and (16) correspondingly) produced
by pairs created by the same parent photon as a function of the
parent photon energy i( ) g and magnetic field strength B. The
energy of RICS photons are always smaller than the energy of
synchrotron photons, and for B 10 G12< significantly so.
Because of the much faster energy degradation in the RICS
process, cascade branches initiated by RICS photons are in
general shorter than those initiated by synchrotron photons. In
later cascade generations RICS photons freely escape the
cascade zone while synchrotron photons emitted by the same
particles are absorbed, still splitting the energy of the parent
photons into pairs. Therefore, RICS cascade branches should
be in general less efficient in splitting the energy than
synchrotron ones.
Finally let us address the question of how much energy is

going into RICS branches of the cascade. The energy powering
RICS branches is the kinetic energy of pairs moving along
magnetic field lines, while synchrotron branches are powered
by the perpendicular energy of freshly created pairs. From
Equations (12) and (13) we get for the ratio of the

Figure 18. Diagram showing the general chain of physical processes in a
strong polar cap cascade. Cascade generations are shown on the left—numbers
connected by double arrows. In each generation particles e (electrons and/or
positrons) produce photons ( CRg —via curvature radiation, syng —via synchro-
tron radiation, RICSg —via Resonant inverse Compton scattering), which are
turned into pairs of the next cascade generation. The CR-synchrotron cascades
studied in detail in this paper are shown by solid arrow, dashed arrows show
RICS initiated branches which are discussed only in Section 9.

Figure 19. Ratio of of the characteristic energy of RICS photons ,RICS
1( ) g

emitted by the first generation pairs to the energy of escaping photons: contours
of log ,RICS

1
,esc

( ) g g
⎡⎣ ⎤⎦ are plotted as a function of of logarithms of the radius of

curvature of magnetic field lines cr in cm and magnetic field strength B in
Gauss. We used the following values for gap parameters P = 33 ms, 2jx = and

1 7ac = .

Figure 20. Ratio of the characteristic energies of synchrotron i
,syn

1( ) g+ and RICS
i
,RICS

1( ) g
+ photons emitted by freshly created pairs ( i th1( )+ generation cascade

photons): contours of log i i
,syn

1
,RICS

1( ) ( ) g g
+ +⎡⎣ ⎤⎦ are plotted as a function of

logarithms of the parent photon energy i( ) g and magnetic field strength B in
Gauss for 10 cmc

7r = .
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perpendicular to parallel pair energies

b
1 1. 50a

2 1 2

( )



c
= + -^

-


⎜ ⎟

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

As bac > (see Equation (8)), the minimum value for this ratio

is 2 1 0.414-  . In Figure 21 we plot  ^  as a function of
the energy of the parent photon and magnetic field strength B.
For most of the parameter space in each pair creation event, the
fraction of energy going into a the RICS cascade branch is
smaller than those going into the synchrotron branch. Even in
the case when more energy is left in the pairs’ parallel motion,
the energy available to the RICS branch is only 1.5 times larger
than the energy available for synchrotron branch. In this case,
however, the value of ac is close to b, i.e., pair formation
occurs near the kinematic threshold and is not very efficient
(see Section 3.1). Hence, cascades where RICS branches have
more available energy should not be very efficient.

Summarizing the above arguments, RICS branches are less
efficient in splitting photon energy into pairs and the energy
available to those branches is in the best case comparable to the
energy available for synchrotron branches. The effect of RICS
branches are strongest for higher values of the magnetic field,

few 1012 ´ G, when pair formation happens close to
kinematic threshold and the cascade multiplicities are lower
than for weaker magnetic fields. The final multiplicity of the
total cascades should be less than twice that of the pure CR-
synchrotron cascade in the best case and so the pure CR-
synchrotron cascades studied in this paper provide good
estimates for the multiplicity of strong polar cap cascades.

10. FLUX OF PRIMARY PARTICLES AND PAIR YIELD

As we have shown above, for the most efficient polar cap
cascades the total pair yield for a given value of the magnetic
field B depends mostly on the flux of primary particles.
According to self-consistent models of polar cap acceleration

zones (T10, TA13), particle acceleration is intermittent and the
pattern of plasma flow and acceleration efficiency depends on
the ratio of the current density imposed by the magnetosphere
to the GJ current density j jm GJ as well as the boundary
conditions at the NS surface—whether particles can be
extracted from the surface or not.
There are essentially three qualitatively different regimes of

plasma flow that determine the flux of primary pair-producing
particles: (i) in space charge limited flow with j j0 1m GJ< <
particles are accelerated up to very low energies,  ~ few, and
no pairs are produced, (ii) in space charge limited flow with
j j 1m GJ > a significant flux of primary particles of the order of

j eGJ~ is accelerated through the gap while the gap is moving
toward the NS, (iii) in all other cases—i.e., for any current
density in Ruderman–Sutherland model and for j j 0m GJ < in
space charge limited flow regime—in each burst of pair
formation a blob of primary particles is produced during
formation of the gap, and then no significant amount of primary
particles is created until the formation of the next gap.
In Figure 22 we plot as an example for case (iii) a phase

portrait and densities of plasma and photons in the phase space
for a Ruderman–Sutherland cascade with j j 1m GJ = . The
process of gap formation for this case is described at the
beginning of Section 6.2. When the gap is formed, only a very
few particles leak from the plasma tail—in this case electrons,
visible as a line-like feature in the top two panels of Figure 22
—are accelerated in the gap, the flux of these particles is much
less than j eGJ~ and their contribution to the pair production
can be neglected. The blob of primary particles which was
created during the gap formation has a density of a few nGJ in
its densest parts and a size comparable to the gap’s height.
Those particles—in this case positrons in the area surrounded
by a dotted line on the plot for positron phase space density in
Figure 22—create the vast majority of pairs. The density of
primary particles in the blob is high but no new primary
particles are created until the next gap is formed, the duty cycle
of the cascade is small. The resulting flux of primary particles
averaged over the period of gap formation is rather low.
In case (ii), in space-charge limited flow with super GJ

current density, the situation is qualitatively different in that
during the lifetime of the gap, and not only during the time the
gap is forming, as in case (iii), a significant constant flux of
particles is going through the acceleration zone. The duty cycle
of such a cascade should be substantially higher than in any
other types of cascades. As an example of such a cascade we
plot in Figure 23 a phase portrait and the densities of plasma
and photons in phase space for a cascade in space-charge
limited flow regime with j j 1.5m GJ = . The gap is formed at
some distance from the NS and moves toward it. When the first
particles are formed the process of electric field screening
proceeds in a similar way to the case of Ruderman–Sutherland
cascades; the blob of ultrarelativistic particles is created and
particles leaking from it create a tail of mildly relativistic
plasma screening the electric field behind the blob; this blog
moves toward the NS creating pairs. However, a constant flux
of particles extracted from the NS surface—in this case
electrons, visible as a line-like feature in the top two panels of
Figure 23—are accelerated in the gap. The density of these
electrons is high (for the case shown in Figure 23 it is

n1.25 GJ ) and these particles, and not the particles from the
blob, produce most of the pairs.

Figure 21. Ratio of perpendicular to parallel to B energy of freshly created
pairs: contours of  ^  as a function of logarithms of the parent photon energy
g and magnetic field strength B in Gauss for 10 cmc

7r = .

21

The Astrophysical Journal, 810:144 (26pp), 2015 September 10 Timokhin & Harding



Because of the intermittency of pair formation, the resulting
multiplicity must be adjusted by the relative fraction of time
during which primary particles are produced. If activet is the
time of active particle acceleration and Tcascade is the time

between the beginning of successive bursts of pair creation,
then the pair multiplicity as discussed in previous sections
should be multiplied by the attenuation factor

f
T

51active

cascade
( )

t
=k

to get the average multiplicity of pair cascades.
The existing self-consistent simulations of particle accelera-

tion (T10, TA13) are inconclusive about the cascade repetition
rate. The numerical resolution in these simulations was
inadequate for that purpose—because of copious pair formation
the Debye length of plasma at some point became smaller than
the cell size and the formation of the plasma tail could not be
simulated accurately; the repetition rate, however, is deter-
mined by the mildly relativistic plasma in the plasma tail, as the
next burst of pair formation starts only when plasma leaves the
polar cap region. Future numerical simulations would address

Figure 22. Snapshot of the phase space for Ruderman–Sutherland cascade at
the end of a discharge. Cascade an pulsar parameters: j j B1 10 Gm GJ

12= = ,
P = 33 ms, 1jx = . Horizontal axis—particle positron x, vertical axis—particle
momentum normalized to mec; the vertical axis is logarithmic except for the
region around zero momentum ( p5 5- < < ), where the scale is linear. The
top panel shows phase space portrait of the cascade: each dot represents a
numerical particle (every 10th particle is plotted); blue dots—electrons, red
dots—positrons, black dots—photons. Three plots beneath show particle
number density in phase space: p- vs. x-electrons, p+ vs. x-positrons, pg vs.
x-photons. Particle number density is color-coded according to the color map
on the right in units of nGJ. Particles which produce most of the pairs are
positrons inside the area surrounded by dotted line marked as “bulk of pair-
producing particles.” On the top of the plots we show the sketch of the structure
of the acceleration zone from Figure 11(b).

Figure 23. Snapshot of the phase space for cascade in Space Charge Limited
Flow regime. Cascade an pulsar parameters: j j B1.5 10 Gm GJ

12= = , P =
33 ms, 0.25jx = . Types of plots and notations are the same as in Figure 22.
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this issue and provide accurate values for cascade duty cycles;
meanwhile here we will try to give a rough estimate for the
cascade repetition rate using the following simple physical
arguments.

The strongest pair formation can continue up to the distance
of the order of a few NS radii Rns. Although the exact physical
mechanism responsible for formation of the mildly relativistic
plasma tail is not clear (see previous paragraph) it seems to us
plausible to expect that when plasma injection due to pair
formation stops, reversal of some pairs toward the NS—plasma
leakage from the blob to the tail—should taper off as well. So,
the time when plasma is filling the polar cap region is of the
order of R cns~ . The mildly relativistic pairs which fill the
polar cap region after the blob of plasma has moved away are
moving with relativistic velocities, so the time the plasma needs
to clear out is also of the order of R cns~ . Therefore, the
cascade repetition rate seems to be T R cfewcascade ns~ ´ .

For the case (iii), in the flow regime with vacuum gaps—
Ruderman–Sutherland cascades or space-charge limited flow in
return current regions—particles are accelerated only during
formation of the gap, the time of active particle acceleration is
quite short. The longitudinal size of the blob of primary
particles is about the size of the gap hgap, and the primary
particle density in the blob is a few nGJ. All primary particles in
the blob move in the same direction and the blob passes any
given surface normal to the field lines during time

h cactive gapt ~ . If the next gap will form after the blob of
primary particles moves a few Rns away, the attenuation factor
should be

f
h

R
P B4 10 . 52a j

gap

ns

2 1 7 3 7
c,7
2 7 3 7

12
4 7 ( )c x r~ ´k

- - -

For the Crab pulsar this attenuation factor is around 0.001 if we
assume P = 33 ms, B 3 10 G12= ´ , 1 7ac = , and 1jx =
(for inclination angle 60° and current density j jm GJ ). The
resulting multiplicity of such cascades in Crab would be

n103
GJ .

In the space-charge limited flow regime with super-GJ
current density, case (ii), the cascade efficiency should be much
higher. The gap appears at some distance and moves toward the
NS (see Section 6.2 in TA13). The process of gap formation is
very similar to that in cascades for case (iii) discussed above. A
blob of relativistic particles is created, which in this case
propagates toward the NS, and pair plasma leaking from it
creates a plasma tail filling the region behind the blob which
prevents formation of the next gap. But in this case particles
extracted from the NS surface flow into the magnetosphere
through the gap and are accelerated all the time the gap exists;
these particles create most of the pairs. When the gap
disappears, particle acceleration stops. The remaining plasma
should leave the gap and flow into the magnetosphere before
the next gap can appear. The time necessary for the remaining
plasma to leave should be comparable to the time of the gap’s
existence, as all particles are relativistic. Therefore, in this case
the attenuation factor should be f 1 few~k —much higher
than given by Equation (52). So, polar cap regions with super-
GJ current density should have a pair yield of about n105

GJ.
Let us summarize our findings. Pulsars with polar cap

cascades operating in the Ruderman–Sutherland regime would
not be efficient pair producer, the highest yield should be less
that n103

GJ~ . If the polar cap cascades operate in the space
charge limited flow regime, then in regions with super-GJ

current densities the pair yield is quite high, around n105
GJ; in

the regions with return current (anti-GJ current density) the
yield should be less that n103

GJ~ , and in regions with sub-GJ
current densities no pair plasma would be produced at all. We
therefore conclude that the maximum pair yield of a young
pulsar would be less that n105

GJ, as only a fraction of the polar
cap can have super-GJ current density.
Pair yield is mostly affected by the duty cycle of the cascade,

and not by pulsar parameters such as magnetic field strength B,
radius of curvature of magnetic field lines cr , or pulsar period
P. This holds only for the regime in which the gap height is
much smaller than the PC radius, true for all young pulsars.
When the gap height approaches and exceeds the PC radius, the
pair yield drops quickly, as shown in Figure 9. The distribution
of j jm GJ in the polar cap is determined by the pulsar
inclination angle and we expect that inclination angle should
be the most important factor determining pair yield of a young
pulsar.

11. DISCUSSION

We have performed a systematic study of electron–positron
pair cascades above pulsar PCs for a variety of input
parameters including surface magnetic field, pulsar rotation
period, primary particle energy and magnetic field radius of
curvature. We have also studied here for the first time the
multiplicity of self-consistent pair cascades, i.e., those that are
capable of generating currents consistent with global magneto-
sphere models.
We find that pair multiplicity is maximized for a magnetic

field strength near 1012 G, independent of the other parameters.
This value of field strength strikes a balance between
maximizing the fraction of photons that pair produce—the
weaker the magnetic field the higher the number of escaping
photons—and the fraction of photon energy going into pair
production—in stronger fields photons are absorbed when they
have smaller angles to B, and created pairs, having smaller
perpendicular to B momenta, emit less synchrotron photons,
which produce the next generation of pairs. This is true for CR
—synchrotron cascades, which should be the dominant source
of pairs in young energetic pulsars. For stronger magnetic fields
B 3 1012 ´ G RICS of soft X-ray photons emitted by the NS
surface can tap some of the pair’s energy parallel to B and
increase the cascade multiplicity. RICS cascade branches,
however, are less efficient than the synchrotron branches; this
together with the decrease of the photon absorption cross-
section for near threshold pair creation in strong magnetic fields
should not change the fact the polar cap cascade multiplicity
reaches its maximum for B ∼ 1012 G.
We find that the pair multiplicity at the peak of the cascade

cycle, 105k ~ , is remarkably insensitive to pulsar period,
magnetic field and radius of curvature of magnetic field lines.
The reason for this is self-regulation of the accelerator by pair
creation: for pulsar parameters resulting in more efficient pair
production, the size of the acceleration gap is smaller and the
primary particle energy is lower and vice versa. The most
important factor determining the multiplicity of polar cap
cascades is the flux of primary particles which depends on the
“duty cycle” of the particle acceleration in time-dependent
cascades. Estimating the “duty cycle” we find that the time-
averaged pair multiplicity is limited to 105~ for the case of
space charge-limited flow (free particle extraction from the NS)
with super Goldreich–Julian current density ( j j 1GJ > ) and to
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only 103~ for the case of Ruderman–Sutherland gaps (no
particle extraction from the PC) and space charge-limited flow
with anti Goldreich–Julian current density ( j j 0GJ < ). The
current density distribution in the PC depends on the pulsar
inclination angle, and so for young energetic pulsars the
inclination angle should be the most important factor
determining the total multiplicity of plasma in the
magnetosphere.

Our finding of a peak multiplicity from self-consistent pair
cascades in young pulsars ( 105~ ), that is largely independent
of their period and magnetic fields, is very different from
previous predictions from steady cascades that produce a range
of multiplicities (102–104) that depend strongly on pulsar
parameters. This difference primarily results from much
smaller gap heights in the time-dependent cascades, that keep
the gap size much less than the PC radius over a large
parameter range. This in turn results in a nearly uniform
magnetic field strength throughout the gaps, higher accelerating
electric fields, higher primary particle energies and more
efficient pair production—primary particles are accelerated
faster and photons are injected in the region of stronger
magnetic field than in previous steady cascade models.

We have also numerically simulated the photon spectra from
self-consistent polar cap pair cascades. Our results show that
the cascade photon spectra from the more compact gaps nearer
to the neutron star surface have cutoffs that are around
10–100MeV. This is at the lower end the Fermi energy band
(30MeV–300 GeV), which may explain why Fermi has not
seen strong evidence for γ-ray emission from the PC. High
energy emission from pair cascades is thus expected to occur in
lower energy bands, below 100MeV. PC cascade emission
may have been detected recently from PSR J1813–1246
(Marelli et al. 2014) at X-ray energies by XMM-Newton and
Chandra. The unusual X-ray light curve that shows two peaks
separated by 0.5 in phase but offset by a quarter of a period
with the γ-ray peaks can be explained through a geometric
model placing the γ-ray emission in the outer magnetosphere
and the X-ray emission at lower altitude above the PCs, and
could be coming from the PC cascades.

Our results show that PC cascades are more efficient in
producing electron–positron pairs that was previously assumed.
However, even the higher pair multiplicity of 105 is not enough
to account for the fluxes of particles needed to explain the
synchrotron radiation from PWNe. Based on a multiplicity of
105, we estimate that the Crab pulsar produces a pair flux from
each PC of about 2 10 pairs s39 1´ - . The flux from both PCs is
an order of magnitude smaller than the pair flux required to
account for the radiation from the nebula, which is estimated to
be about 4 10 pairs s40 1~ ´ - (de Jager et al. 1996). Cascades
in the outer magnetosphere are not very efficient pair producers
(e.g., Hirotani 2006), and so the injection of plasma by pulsars
can not account for the population of particles in PWNe
emitting at radio wavelengths. These radio emitting particles
must then have a different origin from particles emitting at
shorter wavelength; for example, they might be picked up from
the gas filaments in the supernova remnant or be remnants of
some unknown acceleration mechanism in the early history of
the nebula (Atoyan & Aharonian 1996).

Another implication of our results concerns observations of
cosmic-ray electrons and positrons at Earth that have shown an
excess of positrons over what can be produced in secondary
cosmic-ray interactions (Adriani et al. 2009; Accardo

et al. 2014), indicating the existence of primary positron
sources in the Galaxy. Various studies (e.g., Gendelev
et al. 2010) have estimated that PWNe could account for the
excess of cosmic ray positrons. With higher pair multiplicity
from young pulsars, and subsequent acceleration of the pairs at
the pulsar wind termination shock, PWNe could produce a
more significant contribution of primary cosmic ray positrons.

This work was supported by a NASA Astrophysics Theory
grant and a Fermi Cycle-5 guest investigator grant.

APPENDIX A
ALGORITHMS FOR SEMI-ANALYTICAL

CALCULATION OF CASCADE MULTIPLICITY

Here we show pseudo-codes of algorithms used to compute
cascade multiplicity. For calculation of B, ,a c( )c rg we
computed and stored a table of 1 ac values for a uniformly
divided grid 77 30 20´ ´ in Blog log log c r´ ´g space,
and then used cubic piece-polynomial interpolation to get ac
for parameter values required by expressions used in the
algorithms.
Algorithm 1 computes total number of particles produced in

synchrotron cascade initiated by a single primary photon with
the energy g, physical processes are described in Section 4.3.
e_phot and n_phot are the number and the energy of
synchrotron photons emitted by particles of the current
generation, e_phot is the energy of escaping photons, and
n is the total number of particles produced in all previous
generations.

ALGORITHM 1. Multiplicity of synchrotron cascade

Data: g—energy of primary photon, sesc—mfp of escaping photon
Result: Nsyn—total number of particles produced in synchrotron cascade
initiated by a photon with the energy g

Function Nsyn (òγ, sesc):
e esc eq 10

e phot

n phot 1

n 0
e phot e esc

n n 2 n phot

n phot n phot e phot eq 15

e phot e phot eq 16

s

n

while do

end
return n
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end

Algorithm 2 computes the total multiplicity κ of a CR-
synchrotron cascade according to Equation (23). e_part is
the energy of the primary particle at the current distance si;
e_phot is the energy and n_phot is the number of CR
photons emitted by the primary particle at the current distance,
Nsyn is the number of particles generated in synchrotron
cascades initiated by the primary particle at the current
distance. Integration over the distance is done with the simple
trapezoidal rule.

ALGORITHM 2. Multiplicity of CR-synchrotron cascade

Data: 0—energy of the primary particle, sCR—characteristic size of the cas-
cade, sesc—mfp of escaping photons
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(Continued)

Result: total number of pairs produced by the primary particle with the energy
0

begin

Nsyn last 0

n 0

CR radiation at distance

e part eq 19

e phot e part eq 21

n phot e part eq 22

synchrotron cascade multiplicity

from Algorithm 1

Nsyn n phot e phot

algorithm1
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s s s
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end
return
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APPENDIX B
TRANSITION TO RADIATION REACTION LIMITED

REGIME

Radiation reaction begins playing an important role in the
dynamics of particle acceleration if particle energy losses per
unit time become comparable to the work done on the particle
by the accelerating electric field. For CR the condition for
applicability of the free acceleration regime is (see Equa-
tion (17))

eEc
e

c

c2

3
. 53

2

3

2

c

2
4 ( )

r 

⎛
⎝⎜

⎞
⎠⎟

The electric field E grows linearly with the distance l traveled
by the particle in the gap, Equation (27); the particle energy 
increases as l 2

, Equation (32), and at some distance the
condition (53) is violated. However, if condition (53) holds up
to the distance l e

 where the particle emits “gap-terminating”
photons, then the gap length and the final particle energies can
be well described by the free acceleration regime, neglecting
radiation energy losses. Using Equation (27) for E, Equa-
tion (32) for , and substituting l ,gap

e
 for l from the

Equation (39) inequality (53) becomes the condition on the
magnetic field strength

B B B
8

3
2.8 10 1.15 10 G. 54f a q q

3 11 ( )a c> ´ = ´-

In the second step we used the value 1 7ac = . The radius of
curvature cr and pulsar period P cancel out, except for a weak
dependence of ac on cr . We see that for most non-millisecond
pulsars radiation reaction can be neglected.

APPENDIX C
LIMIT ON 1D APPROXIMATION

The one-dimensional approximation for particle acceleration
in the gaps works well if the length of the gap is much smaller

that the width of the polar cap. As the length of the gap is 2~
times larger than lgap, we can set the formal limit on 1D
approximation as

l r , 55gap pc ( )<

where r R Pc2pc ns
3p= is the polar cap radius. Using

Equations (37), (39) for lgap and l e
 we get the following limits

on pulsar parameters for applicability of the 1D approximation
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The pulsar magnetic field is usually estimated assuming
magnetodipolar energy losses from the values of period P

and period derivative Ṗ as B PP3.2 1019 ˙= ´ . Expressing B
in this way and putting the numerical values for physical
constants, we get from Equation (56) the following condition
for applicability of 1D approximation in terms of P and Ṗ

P P P3.21 10 4.3 10 ,

57

a j
22 1 2 3 2

c
9 4 16

c,7
9 4˙

( )

c x r r> ´ ´- - -

in the last step we used values 2jx = and 1 7ac = . For
cascades along dipole magnetic field lines at the edge of the
polar cap with the radius of curvature

R
P

4

3
9.2 10 cm, 58c

ns

pc

7 ( )r
q

= » ´

where R cP2pc nsq p= is the colatitude of the polar cap edge,
condition (57) takes the form

P P4 10 . 5916 11 4˙ ( )> ´ -
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