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Abstract

We study electron–positron pair production in polar caps of energetic pulsars to determine the maximum
multiplicity of pair plasma a pulsar can produce under the most favorable conditions. This paper complements and
updates our study of pair cascades presented in Timokhin & Harding (2015) with a more accurate treatment of the
effects of ultrastrong B 3 1012 ´ G magnetic fields and emission processes of primary and secondary particles.
We include pairs produced by curvature and synchrotron radiation photons as well as resonant Compton-scattered
photons. We develop a semianalytical model of electron–positron cascades that can efficiently simulate pair
cascades with an arbitrary number of microphysical processes and use it to explore cascade properties for a wide
range of pulsar parameters. We argue that the maximum cascade multiplicity cannot exceed a few 105~ ´ and that
the multiplicity has a rather weak dependence on pulsar period. The highest multiplicity is achieved in pulsars
with magnetic field B4 10 10 G12 13 ´ and hot surfaces, with T106K. We also derive analytical
expressions for several physical quantities relevant for electromagnetic cascade in pulsars, which may be useful in
future works on pulsar cascades, including the upper limit on cascade multiplicity and various approximations for
the parameter χ, the exponential factor in the expression for photon attenuation in strong magnetic fields.
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1. Introduction

Dense electron–positron pair plasmas are an integral part of the
standard model for rotation-powered pulsars, which was initially
proposed by Goldreich & Julian (1969) and Sturrock (1971).
According to the standard model, a pulsar magnetosphere is filled
with dense pair plasma, which screens the electric field along
magnetic field lines everywhere, except in some small zones
responsible for particle acceleration and emission. The sharpness
of peaks in pulsar light curves is a strong argument in favor of thin
acceleration zones and screened electric field in most parts of the
pulsar magnetosphere. There is also direct observational evidence
for plasma creation in pulsars: the most energetic ones are
surrounded by “cocoons” of dense relativistic plasma—pulsar
wind nebulae (PWNe)—powered by plasma outflow from their
pulsars. Understanding pair creation is important for unraveling
the mystery of the pulsar emission mechanism(s) and under-
standing pulsar surroundings on both small and large scales.
Pair plasma flows out of the magnetosphere, providing the
radiating particles for PWNe, and could make a make significant
contribution to the lepton component of cosmic rays.

The regions responsible for production of most of the pair
plasma are believed to be pulsar polar caps (PCs)—small
regions near the magnetic poles (Sturrock 1971; Ruderman
& Sutherland 1975; Arons & Scharlemann 1979). Without
dense plasma produced in the PCs, at the base of open
magnetic field lines, the magnetosphere would have large
volumes with unscreened electric field, as pair creation in,
e.g., outer gaps (Cheng et al. 1976) cannot screen the electric
field over the rest of the magnetosphere. The physical
process responsible for pair production in the PCs is the
conversion of high-energy γ-rays into electron–positron
pairs in strong (1011 G) magnetic fields. According to the
recent self-consistent PC models, specific regions of the PC
intermittently become charge starved, when the number
density of charged particles is not enough to support both the

change and the current density required by the global
structure of the pulsar magnetosphere (Timokhin 2010;
Timokhin & Arons 2013). This gives rise to a strong
accelerating electric field and formation of (intermittent)
accelerating zone(s). Some charged particles enter these
zones, are accelerated to very high energies, and emit γ-rays,
creating electron–positron pairs. The pairs can also emit
pair-producing photons and so the avalanche develops until
photons emitted by the last generation of pairs can no longer
produce pairs and escape the magnetosphere.
The cascade process in pulsar PCs has been the subject of

extensive studies (e.g., Daugherty & Harding 1982; Gurevich
& Istomin 1985; Zhang & Harding 2000; Hibschman &
Arons 2001; Medin & Lai 2010). Those works considered pair
creation together with particle acceleration, and so the results
were dependent on the acceleration model used. The most
popular acceleration model assumed steady, time-independent
acceleration of the primary particles in a flow with a relatively
weak accelerating electric field (Arons & Scharlemann 1979;
Muslimov & Tsygan 1992), which recently was shown to be
incorrect by means of direct self-consistent numerical simula-
tions (Timokhin & Arons 2013). The necessity of bringing PC
pair-creation models up to date with the self-consistent
description of pair acceleration motivated us to develop a
simple semianalytical model for pair cascades in pulsar PCs
that can be easily decoupled from the details of the particle
acceleration model and that allows easy exploration of the
parameter space (Timokhin & Harding 2015, hereafter PaperI).
In PaperI, we considered cascades at PCs of young pulsars
with moderate magnetic fields, when the dominant processes of
high-energy photon emission are the curvature radiation (CR)
of primary particles and the synchrotron radiation (SR) of
secondary particles. This model agrees very well with the
results of elaborate numerical simulations of pair cascade. We
have shown that the maximum pair multiplicity achievable in
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pulsars does not exceed few 105~ ´ , which sets stringent
limits on PWN models.

In this paper, we present a significant improvement to the
semianalytical model from PaperI. The new model allows
inclusion of additional emission processes, provides detailed
information about the spatial distribution of pair creation, and is
applicable for pulsars with strong, up to ∼1013 G, magnetic
fields. More specifically, the new model (i) can include an
arbitrary number of emission processes and collect detailed
information about where and in what cascade branch pairs are
created, (ii) incorporates strong field corrections to the
expression for the attenuation coefficient for one-photon pair
creation, and (iii) takes into account the effect of photons
splitting on the cascade multiplicity.

The main question we try to answer in this paper is: what is
the maximum number density of pair plasma a pulsar can
generate? It has been shown in numerous studies that the
highest cascade multiplicity is expected in young energetic
pulsars with high accelerating electric fields, where cascades
are initiated by CR of primary particles. In such pulsars,
primary particles are accelerated to higher energies over a short
distance; emit photons via CR, which is the most efficient
radiation mechanism in such physical conditions; and those
photons propagate a short distance before being absorbed in a
still strong magnetic field. In PaperI, we limited ourselves to
CR–synchrotron cascades, without considering resonant
inverse Compton scattering (RICS) of thermal photons from
the neutron star (NS) surface by particles in the cascade. As we
argued in that paper, it was an adequate approximation for most
young energetic pulsars. However, for B1012 G, right where
CR–synchrotron cascades reach their highest multiplicity,
RICS becomes an important emission mechanism, while
inverse Compton scattering in the non-resonant regime remains
irrelevant for PC cascades. In order to get an accurate limit on
the maximum cascade multiplicity, RICS must be taken into
account.

In this paper, we apply our new semianalytical model to
cascades where pairs are created by photons emitted via CR of
primary particles and by photons emitted by secondary
particles via SR as well as RICS of soft X-rays from the NS
surface.3 Similar to PaperI, we consider the physical processes
in pair cascades and particle acceleration models separately to
clearly set apart different factors influencing the efficiency
of pair cascades. Results presented in this paper supersede
results of PaperI for high-field (around ∼1013 G) pulsars
and improve multiplicity estimates for pulsars with medium
magnetic fields (∼1012 G) covering all ranges of parameters
for pulsars capable of generating high-multiplicity pair plasma.

We do not attempt to model how the entire magnetosphere is
filled with plasma (like e.g., Philippov et al. 2015; Brambilla
et al. 2018). We adopt the standard pulsar model and
concentrate on the microphysics of the PC cascade zone—the
most important supplier of pair plasma in the magnetosphere—
to determine the upper limit on pair plasma density that a pulsar
can generate.

The plan of the paper is as follows. In Section 2, we first
discuss general properties of electron–positron cascades and
then give an overview of the microphysical processes in PC

cascades. In Section 3, we consider photon absorption in strong
magnetic fields: single photon pair creation in Section 3.1,
photon splitting in Section 3.2, and the energy of photons
escaping from the cascade in Section 3.3. We discuss particle
acceleration in Section 4. In Section 5, we give a simple estimate
for the upper limit of the cascade multiplicity from first
principles. Section 6 gives an overview of our semianalytical
cascade model (with more technical details described in
Appendix C). The main results are described in Section 7. We
summarize our findings and discuss the limitations of our model
in Section 8.

2. Physics of Polar Cap Cascades: An Overview

In pulsar magnetospheres, electron–positron pairs can be
created by single-photon absorption in a strong magnetic field
( Bg ), which can happen only close to the NS where the
magnetic field is strong enough, and in two-photon collisions
(γγ), which are relevant mostly in the outer magnetosphere. In
an electron–positron cascade, primary particles lose energy by
some emission mechanism, creating high-energy photons that
are absorbed in a pair-creation process and produce electron–
positron pairs. Pairs can also emit high-energy photons, which
then create the next generation of pairs. As the cascade
develops, it “alternates” between electron/positron and photon
states. At each step in the cascade, the energy of the parent
particle is divided between secondary particles. Each subse-
quent generation of particles has smaller energies than the
previous one. At some cascade generation, the energy of
the photons drops below the pair formation threshold and the
cascade terminates. If the energy of the parent particle is
divided roughly equally between its secondaries, i.e., the
photonʼs energy is roughly equally divided between electron
and positron, and each pair member emits several hard photons
of approximately the same energy, then at the last cascade step,
the available energy will be approximately equally split
between photons with energies somewhat above the pair
formation threshold. These photons will create the last
generation of pairs. The number of pairs in such a cascade
grows as a geometric progression at each generation, and most
of the pairs will be created at the last cascade step. In an ideal
case, when both primary and secondary particles radiate all
their energies as pair-producing photons, the multiplicity κ of
such a cascade (the number of particles produced by each
primary particle) would be

2 , 1
p

max
,esc




k
g

 ( )

where ,escg is the maximum energy of the photons that escape
the cascade (or the minimum energy of pair-producing
photons), and p is the energy of primary particles. For
convenience from here on, all particle and photon energies will
be quoted in terms of mec

2. In a real cascade, both primary and
secondary particles do not radiate all their kinetic energy as
pair-producing photons, and maxk can be considered as an
upper limit on the multiplicity.
In the above ideal limit, the energy of the primary particle is

divided into chunks of the size ,escg . Usually, 2,escg  and
even in the ideal case, when energy is not lost at intermediate
steps, the cascade multiplicity is much smaller than p (in terms

3 Pairs may also be created via RICS of primary particles. However, it has
been shown (Harding & Muslimov 2002) that pair cascades from primary
RICS have very low multiplicity. We therefore ignore this channel of pair
production here.
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of mec
2), which would be the case if all the energy of the

primary particles went into the rest energy of pairs.4

In the de facto standard pulsar model, particles can be
accelerated to very high energies and produce dense pair
plasma in the PCs (Sturrock 1971), in thin regions along last
closed magnetic field lines (the “slot gap” model of
Arons 1983), and in the “outer gaps,” regions in the outer
magnetosphere along magnetic field lines crossing the surface
where the Goldreich & Julian (1969) charge density changes
sign (Cheng et al. 1976). The outer and slot gaps occupy only a
relatively small volume of the magnetosphere so that most of
the open magnetic field lines do not pass though them. All open
field lines originate in the PCs, and a significant fraction of
them pass through PC particle acceleration zones. The total
number of primary particles in the PC cascades is much larger
than that in cascades in the outer pulsar magnetosphere.
Moreover, simulation of the outer gap cascades predicts
multiplicities not higher than 104 (e.g., Hirotani 2006). So, at
least in the standard pulsar model, most of the pairs are
produced in the PC cascades.

It was demonstrated in Timokhin & Arons (2013) and
Timokhin (2010) that pair formation in pulsars is an
intermittent process. Time periods of efficient particle accel-
eration and intense pair production alternate with periods of
quiet plasma flow when dense plasma screens the accelerating
electric field and no pairs are formed (more on this in
Section 4). As in PaperI, here we consider cascades at the peak
of the pair formation cycle, when their multiplicity is the
highest, postponing discussion on the effects of intermittency
to Section 8. Such cascades are generated by the primary
particles accelerated in well-developed gaps. Screening of the
accelerating electric field in the gap happens very quickly, well
before the multiplicity reaches its maximum values. Once
primary particles have produced the first generation of pairs
that screen the accelerating electric field, they keep moving in
the regions of screened electric field, radiating their energy
away and giving rise to extensive pair cascades. So, the PC
cascades can be considered as initiated by primary particles
with given energies freely moving along magnetic field lines.

Figure 1 gives a schematic overview of processes involved
in pair plasma generation in PC cascades;5 shown are the first
two generations in a cascade initiated by a primary electron.
Primary electrons emit CR photons ( CRg ) almost tangent to the
magnetic field lines; primary electrons and CR photons are
generation 0 particles in our notation.6 Magnetic field lines are

curved, and the angle between the photon momentum and the
magnetic field grows as the photon propagates farther from the
emission point. When this angle becomes large enough,
photons are absorbed and each photon creates an electron–
positron pair—a generation 1 electron (e-) and positron (e+).
The pair momentum is directed along the momentum of the
parent photon, and at the moment of creation, the particles have
non-zero momentum perpendicular to the magnetic field. They
radiate this perpendicular momentum almost instantaneously
via SR and move along magnetic field lines. The secondary
particles can scatter thermal X-ray photons Xg coming from the
NS surface and lose their momenta parallel to the magnetic
field. Inverse Compton scattering of the thermal photons in the
non-resonant regime is very ineffective in converting the
energy of the parallel motion of pairs into pair-producing
photons and can be ignored; see Appendix A. On the other
hand, RICS, as it was first pointed out by Dermer (1990),
can become a very efficient emission process in high-field
pulsars. Although the secondary particles are relativistic, their
energy is much lower than that of the primaries, and their
curvature photons cannot create pairs. Generation 1 photons—
synchrotron ( syng ) and RICS ( RICSg ) photons produced by
generation 1 particles—are also emitted (almost) tangent to the
magnetic field line, as the secondary particles are relativistic,
and propagate some distance before acquiring the necessary
angle to the magnetic field and creating generation 2 pairs.

Figure 1. Schematic representation of electron–positron cascade in the PC of a
young pulsar with a high magnetic field; see the text for the description.

4 Cascades can operate in a different regime, when at each step one of the pair
particles gets most of the parent photonʼs energy and then this secondary
particle emits a single high-energy photon carrying most of that particleʼs
energy. Such a cascade can produce p p,esc  ~ - g  pairs, which for

2,escg  will result in a much higher multiplicity than that given by
Equation (1). Photon emission and pair production in such cascades must
happen in the extreme relativistic regime: for Bg pair production and
synchrotron radiation, the parameter χ must be large, 1;c  for gg pair
production and inverse Compton scattering, the energies of the interacting
particles, 1 and 2 , must be 11 2   . For 1c  , photon injection must
happen at large angles to the magnetic field; for 11 2   , the interaction cross-
section is much smaller than Ts . In pulsar cascades, particle acceleration zones
are regulated by pair creation—acceleration stops when pairs start being
injected. This happens first at moderate values of χ and 1 2  , thus preventing
particles from achieving high-enough energies to start cascade in the extreme
relativistic regime.
5 This figure is similar to the Figure 1 from PaperI but now it includes the
RICS of thermal photons by secondary pairs.
6 Primary electrons can also emit RICS photons that produce pairs, but these
are not shown because the numbers are too small to fully screen the
electric field.
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These pairs in their turn radiate their perpendicular momentum
via SR and parallel momenta via RICS, emitting generation 2
photons. The cascade initiated by a single CR photon stops at a
generation where the energy of synchrotron photons falls
below ,escg .

Primary particles emit pair-producing CR photons through-
out the entire cascade zone as they move along the field lines.
Secondary particles emit all their pair-producing synchrotron
photons after their creation almost instantaneously. RICS
photons are emitted by secondary particles over some distance,
which is usually much smaller than the size of the
cascade zone.

In the following sections, we analyze the individual factors
regulating the yield of electron–positron cascades and develop
a semianalytical technique which models cascade development
by following the general picture outline above.

3. Photon Absorption in Magnetic Field

3.1. Pair Creation

For the opacity for single photon pair production in a strong
magnetic field e eg  + -, we use the prescription suggested by
Daugherty & Harding (1983) which can be written as

b f, 0.23 sin exp
4

3
, 2

f

C
,1a y

a
y

c
= -g g a 

⎛
⎝⎜

⎞
⎠⎟( ) ( )

where b B Bqº is the local magnetic field strength B normalized

to the critical quantum magnetic field B eq f C
2a= =

4.41 1013´ G, ψ is the angle between the photon momentum
and the local magnetic field, e c 1 137f

2 a = » is the fine
structure constant, and mc 3.86 10C

11= = ´ - cm is the
reduced Compton wavelength. The parameter χ is defined as

b
1

2
sin , 3c yº g ( )

where g is the photon energy in units of mec
2. Expression(2)

differs from the usual Erber (1966) formula through the term

f
b

exp 0.56 , if sin 2

0, if sin 2

. 4,1

2.6962

3.7





c

y

y
=

-

<
a

g

g

⎧
⎨⎪

⎩⎪

⎛
⎝⎜

⎞
⎠⎟ ( )

The function f ,1a ensures that the attenuation coefficient for pair
production becomes zero below the threshold sin 2 y =g and
corrects ag for the case when absorption happens near the
threshold. The threshold condition for Bg pair production can
be expressed in terms of χ as

b. 5c ( )

Expression(2) works for high, B 3 1012> ´ G, magnetic
fields; for weaker fields, it reduces to the well-known Erberʼs
formula (see Appendix B).

The optical depths for pair creation by a high-energy photon
in a strong magnetic field after propagating a distance l is

l x dx, , , 6
l

0
 òt a y=g g g( ) ( ( )) ( )

where integration is along the photonʼs trajectory. For photons
emitted tangent to the magnetic field line, dx dcr y= , where cr
is the radius of curvature of the magnetic field lines. From

Equation (3), we have b2 y c= g , and substituting it into
Equation (6), we can express the optical depth τ to pair
production as an integral over χ as

A

b
f d, exp

4

3
, 7

2 0

c
,1

 òt c
r
c

c
c= -g

t

g

c

a

⎛
⎝⎜

⎞
⎠⎟( ˜ ) ( )

˜

where A 0.92 1.74 10 cmf C
8 1aº » ´t

- . The optical depth
depends exponentially on χ, and the main contribution to the
integral comes from the values of χ close to the upper boundary
c̃. For a wide range of photon energies and field strengths, the
value of χ at the point where the photon is absorbed, ac , changes
slowly. The mean free path (mfp) of photons can be estimated
from Equation (3) as

b
2

1
. 8ac 

l r c=g
g

 ( )

Both ac and cr change slower than b and g as the cascade
develops. In each cascade generation, the energy of particles
and photons is smaller than that in the preceding generation.
The photon mfp lg increases because of this. If lg
becomes comparable to the characteristic scale of the magnetic
field variation LB, then the increase of lg for the next-
generation photons will be compounded by an additional
decrease of the magnetic field b as well, by at least ∼an order
of magnitude (for a dipolar field). In most cases, the magnetic
field at the anticipated absorption point for the next generation
of photons will drop below the pair formation threshold(5).
Hence, the cascade generation for which LBl ~g should be
the final one.
We consider strong cascades with large multiplicities; such

cascades fully develop before LBl ~g . For such cascades
in the region where most of the pairs are produced, the
magnetic field b and the radius of curvature of the magnetic
field lines cr are approximately constant. In approximation of
the constant b and cr , Equation (7) can be written as

A
b

f dexp
4

3
9c

2 0
,1

a

 òt c
r

c
c

c= -t
g

c

a

⎛
⎝⎜

⎞
⎠⎟( ) ( )

and integrated analytically. The resulting expression is quite
cumbersome; it is derived in Appendix B and given by
Equation (50).
Because the opacity to pair production depends exponen-

tially on χ, it is a reasonable approximation that all photons are
absorbed when they have traveled the distance where 1t = .
We define ac as the value of χ, where the optical depth reaches
1 through

: 1. 10a ac t c =( ) ( )

ac is a solution of the nonlinear Equation (10), with τ given by
Equation (50). We solved Equation (10) numerically for
different values of g, b, and cr . In Figure 2, we plot contours of
1 ac as functions of log g( ) and Blog( ) for three different
values of the radius of curvature of the magnetic field lines,

10 , 10 , and 10 cmc
6 7 8r = . The smallest value of cr corre-

sponds to a strongly multipolar PC magnetic field, when the
radius of curvature is comparable to the NS radius. The largest
value corresponds to the radius of curvature of dipolar
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magnetic field lines, which at the NS surface is given by

R
P

4

3
9.2 10 cm, 11c,dip

NS 7

pc

1

1 2r
q

q
q

= = ´
-⎛

⎝⎜
⎞
⎠⎟ ( )

where θ is the colatitude of the footpoint of the magnetic field line,
P1.45 10pc

2 1 2q = ´ - - —the colatitude of the PC boundary,
P—the pulsar period in seconds, and R 10NS

6= cm—the NS
radius.

1 ac is a smooth function of log g( ), Blog( ), and log cr —as
it is to be expected from exp 1a cµ -g ( )—and can be
accurately approximated using a modest-size numerical table.
The change in the behavior of 1 ac for large magnetic fields,
when the contour lines become horizontal, is due to photon
being absorbed close to the pair production threshold
Equation (5).

The values of ac we obtained here using a more accurate
expression for the Bg opacity, Equation (50), are up to 40%
higher than that from PaperI where we used Erberʼs formula and
made a simple correction for the pair formation threshold by
setting the upper limit on χ according to Equation (5). This
difference is larger than 10% only for magnetic fields with B 
1.5 10 G12´ (compare Figure 2 with Figure 3 from PaperI).
Also note that the values of ac differ significantly from the
often-used value 1 15ac = first suggested by Ruderman &
Sutherland (1975), especially for higher energy photons.
The contour plots of the mfp of the photons lg emitted

tangentially to the magnetic field lines are shown in Figure 3;
lg was calculated according to Equation (8). As expected, it
scales linearly with 1 g and B1 ; the deviation from the linear
behavior is seen only for the combination of g and B when pair
formation happens near the threshold, at B 1.5 1012 ´ G.

Figure 2. Contour plot of 1 ac as a function of the logarithms of the magnetic field strength B in Gauss and the photon energy g normalized to the electron rest
energy, for three values of the radius of curvature of magnetic field lines 10 , 10 , and 10 cmc

6 7 8r = .1 ac values shown on this plot are calculated from Equation (10).

Figure 3. Contour plot of the logarithm of the photon mean free path loglg (in cm) as a function of the logarithms of the magnetic field strength B in Gauss and the
photon energy g normalized to the electron rest energy, for three values of the radius of curvature of magnetic field lines 10 , 10 , and 10 cmc

6 7 8r = . loglg values
shown on this plot are calculated from Equation (8).
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3.2. Photon Splitting

Single photon pair creation is not the only process
responsible for photon attenuation in a strong magnetic field,
albeit it is the most significant one. The most important
competing process to pair creation is magnetic photon splitting
g gg . Aside from the end product, the major differences
between pair creation and photon splitting are (i) pair creation
is a first-order QED process and splitting is a third-order one;
therefore, splitting is weaker than pair creation on the order of

;f
2a (ii) in contrast to pair creation, splitting has no threshold for
photonʼs energy, (iii) while in moderately strong magnetic
fields B Bcr for pair creation, both modes of photon
polarization (P—when the photonʼs electric field is parallel to
the plane containing B and photonʼs momentum, ⊥—the
photonʼs electric field is perpendicular to that plane) have
similar cross-sections and threshold conditions, below the pair
formation threshold, photon splitting is allowed only for the
process ^ (Adler 1971; Usov 2002).

Radiation processes relevant for secondary particles in PC
cascades of energetic pulsars (SR, RICS) produce predomi-
nantly ⊥ polarized photons. Despite the inherently smaller
cross-section of magnetic splitting, the absence of an energy
threshold could allow photons to split before acquiring large-
enough angles to the magnetic field to produce pairs, thus
reducing cascade multiplicity. As we are interested in the most
efficient cascades, a regime where magnetic splitting becomes
important is beyond the scope of this paper. More details on
cascade kinetics in the presence of photon splitting can be
found in Harding et al. (1997) and Baring & Harding
(1997, 2001). Here we want to establish the boundary in the
parameter space where photon splitting starts affecting cascade
multiplicity. To do so, we consider a case of photon splitting
^ for photons below the pair formation threshold.

The attenuation coefficient for photon splitting ^ is
(Baring & Harding 2001; Baring 2008)

c
b,

60
sin 12

f
3

2
C

5 6 6
1
2  a y

a

p
y=g gg g g 

( ) ( )

at low values of the magnetic field perpendicular to the
photonʼs trajectory—for photons below the pair formation
threshold—the scattering amplitude 1 is a constant
independent of b, 26 3151 » . Integration of ag gg over
the distance gives the optical depth for photon splitting (see
Equation (6)); the mfp for splitting can then be estimated as

b1.8 cm. 135 7 6 7
c
6 7l r=g gg g

- - ( )

When the mfp for splitting becomes smaller than the mfp for
pair formation, l l<g gg g , the photon splits before
producing a pair. In Figure 4, we plot the ratio lg gg /lg
as a function of magnetic field strength and photon energy, for
three values of the radius of curvature of magnetic field lines. It
is evident from these plots that splitting is an important
attenuation mechanism only for strong magnetic fields and low-
energy photons. With the increase of the magnetic field, photon
splitting starts affecting first the last cascade generation where
the energy of the photons becomes low. If these photons split,
the resulting photons will be below the pair formation
threshold. In the PC cascades, most of the pairs are produced
in the last cascade generation, and when photon splitting
becomes important, the cascade multiplicity can drop sig-
nificantly. The exact fraction of perpendicularly polarized
photons in the cascade—which are subject to splitting—in
general depends on particle energy distributions, but it is more
than 50% (e.g., Baring & Harding 2001). Hence, the
multiplicity of the pair cascade will drop by at least a factor
of 2 when photon splitting becomes important.
The critical magnetic field strength Bg gg above which

cascade multiplicity becomes affected by photon splitting is the
field strength when l l<g gg g  for the last-generation
photons, i.e., the photons with the escaping energy ,escg (which
we calculate in the next section),

B : . 14,esc ,esc l l=g gg g gg g g g  ( ) ( ) ( )

Figure 4. Contour plot of the ratio of the mfp for photon splitting to the mfp for pair production lg gg /lg (in linear scale) as a function of the logarithms of the
magnetic field strength B in Gauss and the photon energy g normalized to the electron rest energy, for three values of the radius of curvature of magnetic field
lines, 10 , 10 , 10 cmc

6 7 8r = .
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3.3. Energy of Escaping Photons

As we discussed above, photons escaping the cascade are
those with mfp larger than the characteristic scale of magnetic
field variation LBl >g . The formal criterion we use to
calculate the energy of escaping photons ,escg is

s R ;,esc esc NSl =g g( ) sesc is a dimensionless parameter
quantifying the escaping distance in units of RNS. From the
expression for mfp, Equation (8), we get a (nonlinear)7

equation for ,escg ,

s R b
2 . 15a

,esc
c

esc NS


r c
=g ( )

Any global NS magnetic field near the surface decays with
distance as r RNS

d-( ) , 3;d a dipole field, δ=3, is often
considered as a reasonable assumption. A pure dipole,
however, seems to be too idealized an approximation, as the
NS magnetic field is slightly disturbed by the currents flowing
in the magnetosphere. PC cascade models should consider at
least near-dipole magnetic fields with different curvatures of
magnetic field lines. Hence, a reasonable estimate for LB would
be the distance of the order of the NS radius RNS. For our
approximation of constant B and cr , we found that the value
L R 2B NS= —at that distance from the NS the magnetic field
decays by at least a factor of 3—provides a good fit to the
results of the numerical simulations described in PaperI.8

Results described in this paper are obtained assuming
s 0.5esc = .

In Figure 5, we plot the energy of escaping photons,
log ,escg , as a function of the radius of curvature of magnetic
field lines cr and magnetic field strength B for s 1esc = . This
figure shows a (obvious) trend wherein for higher magnetic
fields and smaller radii of curvature, the energy of escaping
photons is lower. The deviation of contours from straight lines
for B 3 10 G12 ´ is due to the change in ac behavior near the
pair formation threshold (see Figure 2 and the subsequent
paragraph). For different values of sesc, the escape energy ,escg
could be estimated from Figure 3.

The critical magnetic field Bg gg above which photon
splitting starts affecting cascade multiplicity is shown in
Figure 5 by the dashed line; Bg gg is calculated from
Equation (14). Cascade multiplicity will drop due to photon
splitting at B 4.4 10 G12 ´ for 10c

6r = cm and at
B 1.3 10 G13 ´ for 10c

8r = cm. The increase of Bg gg
for larger cr is due to the increase of the energy of escaping
photons—lg has a stronger dependence on g than lg gg ,
which leads to the increase of the value of Bg gg according to
Equations (14),(13), and (8).

It would be useful to have an analytical expression for the
energy of the escaping photons; to obtain it, we construct an
approximation for a,escc . We solved Equation (15) to find ;,escg
now, using the interpolation formula for 1 ac , we can find
1 1a a,esc ,escc cº g( ). In Figure 6, we show contours of
1 a,escc as a function of B and cr . There are two distinct regions
on this plot: for B 3 10 G12 ´ , a,escc changes very slowly,
while for larger values of B, it changes significantly but does
not depend on cr . For B 3 10 G12 ´ , the absorption of the

last-generation photons happens near the pair formation
threshold, when R 2,esc NS c  r= g^ ( ) , and so ba,escc  .
For weaker magnetic fields, the opacity for near-threshold
photons is too small for them to be absorbed after traveling a
distance RNS, so the last-generation photons have energies

Figure 5. Energy of escaping photons: contours of log ,escg as a function of the
logarithms of the radius of curvature of magnetic field lines cr in centimeters
and the magnetic field strength B in Gauss for s 1esc = . The critical magnetic
field Bg gg above which photon splitting starts affecting cascade multiplicity is
shown by the dashed line.

Figure 6. Contour plot of a,escc as a function of the logarithms of the magnetic
field strength B in Gauss and the radius of curvature of magnetic field lines cr .

7 The nonlinearity in this equation is because of the nonlinear dependency of
ac on ,escg , b, and cr .

8 In the semianalytical cascade model of PaperI, we used L RB NS= , but our
current model works better for L R 2B NS= when compared with numerical
simulations.
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larger than the pair formation threshold and are absorbed
at very similar values of ac . We find that the following
approximation works quite well:

b b
b

, if 1 15
1 15, if 1 15

. 16a,esc c =
>⎧⎨⎩ ( )

The energy of the escaping photons can be expressed following
Equation (15) as

B

s
1.8 10

0.5
, 17a,esc

3 c,7

12

esc
1

,esc
r

c» ´g

-
⎜ ⎟⎛
⎝

⎞
⎠ ( )

where a,escc is given by Equation (16), and B B 10 G12
12º and

10c,7 c
7r rº cm. This simple prescription for ,escg deviates

from the numerical values shown in Figure 5 by no more than
20% for B 2 10 G12 ´ and B 8 1012 ´ G; the largest
deviation is ∼60% at B 3 1012´ G.

For very small values of a,escc , it is possible to obtain a more
accurate analytical expression for a,escc (and ,escg ). Using the
asymptotic expression for the optical depth in the limit of

1c  derived in Appendix B, Equation (53), and substituting
for the photon energy the energy of escaping photons,
Equation (15), we get

A R b
s

B s

1 3

4
ln

3

16

15.7 1.7 log 3.5 log
0.5

. 18

a
a

,esc

NS
2

c
,esc esc

2

12

7

esc

c r
c

r

»

» + +

t

⎜ ⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠ ( )

4. Particle Acceleration

Self-consistent modeling of accelerating zones in pulsar PCs
(Timokhin 2010; Timokhin & Arons 2013) demonstrated that
particle acceleration and pair formation are always non-
stationary. Each period of intense particle acceleration and
pair formation is followed by a period of quiet plasma flow
when the accelerating electric field is screened, and no pairs are
formed. At the end of the quiet phase, an accelerating gap
begins to form—a region where plasma density is significantly
smaller than the local Goldreich–Julian (GJ) number density

eGJh . Accelerating electric field in the gap increases linearly
with distance as the gap grows. Charged particles entering the
gap are accelerated to very high energies and emit gamma-rays,
which give rise to electron–positron pair cascades. Dense pair
plasma created in the cascades screens the electric field,
stopping the growth of the gap. The gap does not stay at the
same place but moves along magnetic field lines, roughly
preserving its size (and the potential drop) for a while. Most of
the pair plasma is created at or behind the trailing edge of the
gap, where the high-energy particles are located.9 These
particles move into the magnetosphere, emitting gamma-rays
which convert into electron–positron pairs. Both primary and
secondary particles are relativistic and so they move together,
forming a blob of pair plasma whose density increases as pair
formation continues. Some low-energy particles, however,
“leak” from the blob, creating a tail of mildly relativistic
plasma which screens the electric field behind the blob. When
the blob with primary particles moves away from the PC and
pair formation stops, the dense pair plasma from the tail keeps

the electric field screened for a while until most of it has left the
PC zones and a new cycle of pair formation begins.10

Whether the pair formation along given magnetic field lines
occurs and how and it is depend on the ratio j jm GJ of the current
density required to support the twist of magnetic field lines in the
pulsar magnetosphere (e.g., Timokhin 2006; Bai & Spitkovsky
2010), Bj c 4m pº  ´( )∣ ∣, to the local GJ current density,
j cGJ GJhº , where B PcGJh = is the GJ charge density.
Regardless of the ability of the NS surface to supply charged
particles, i.e., in both the space charge-limited flow model of
Arons & Scharlemann (1979) and the no-particle extraction model
of Ruderman & Sutherland (1975), particle acceleration happens
in essentially the same way. For the Ruderman & Sutherland
(1975) regime, effective particle acceleration and pair formation
are possible for almost all values of j jm GJ. In the space
charge-limited flow regime, pair formation is not possible if

j j0 1m GJ< < , but it is possible for all other values of j jm GJ. A
detailed description of particle acceleration in pulsar PCs is given
in Timokhin (2010) for the no-particle extraction regime and
in Timokhin & Arons (2013) for the space charge-limited
flow regime.
Although the character of plasma flow inferred from the self-

consistent simulation of Timokhin (2010) and Timokhin &
Arons (2013) qualitatively differs from that assumed in both
the Ruderman & Sutherland (1975) and Arons & Scharlemann
(1979) type models, the physics of particle acceleration in the
gap is similar to that of the accelerating gap in the Ruderman &
Sutherland (1975) model. Namely, due to the significant
deviation of the charge and current densities from GJ values,
the electric field in the gap is comparable to the vacuum electric
field ( h B c~ W , h is the size of the gap), and particles are
accelerated over a short gap by the strong electric field, which
increases linearly with the distance. In Section 6.2 of PaperI,
we analyzed the physics of particle acceleration and derived an
analytical expression for the energy of the primary particles
accelerated in non-stationary cascades. According to Equation
(41) in PaperI, the final energy of particles accelerated in
the gap

B

c
P B

P B

49

18

5 10 . 19

q
a j

a j

,acc
C
3

1 7
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2 7 1 7 1 7 1 7
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4 7
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⎞
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( )

a,accc is the value of the parameter χ for photons that create
pairs terminating the gap. jx is a factor that shows how the
electric field in the gap is stronger/weaker compared to the
field in a static vacuum gap of an aligned rotator,

j j

j

c

v

j

j
1 2 . 20j

m

GJ
0

m

GJ
0

x º
-

+ »⎜ ⎟⎛
⎝

⎞
⎠

∣ ∣
( )

where j is the current density in the gap. In most cases,
j j j ;m m- ∣ ∣ jGJ

0 is the GJ current density in an aligned
rotator,

j c
B

P
. 21GJ

0
GJ
0hº = ( )

9 See, e.g., Figures 22 and 23 from PaperI.

10 See, e.g., Figure 2 from Timokhin (2010), which gives an overview of the
entire cycle of pair formation described above—it shows snapshots of the
charge density distribution in the PC over the whole cycle.
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v is the velocity of the gap; in most cases, the gap moves with
relativistic velocities, so v c . Taking into account these
approximations, we get the second expression for jx in
Equation (20). jm, and thus jx , depends on the pulsar inclination
angle and the position of the given magnetic field line inside
the PC (see, e.g., Figure 1 in Timokhin & Arons 2013). In
cascades along magnetic field lines where jm is close to the
local value of jGJ in an aligned rotator 2jx ~ , for the same
situation in a pulsar with an inclination angle of 60◦, 1jx ~ .
The energy of primary particles, Equation (19), has the same
dependence on cr , P, and B as the expression for the potential
drop in the gap derived by Ruderman & Sutherland (1975),
their Equation (23). This is to be expected as in both cases,
particles are accelerated by the electric field, which grows
linearly with the distance, and the size of the gap is regulated
by absorption on curvature photons in the magnetic field. The
difference is in the presence of the factor jx and a different
numerical factor.

Here we slightly improve the accuracy of this expression by
calculating self-consistently the value of the parameter a,accc .
Using numerical interpolation for χ (see Section 3.1), it is easy
to obtain self-consistently the energy of primary particles
accelerated in the gap ò by solving numerically the equation

, 22a,acc ,acc  c = ( ( )) ( )

i.e., to find the energy of particles that emit photons terminating
the gap growth, taking into account the dependence of a,accc on
particle energy (via the energy of emitted photons). In Figure 7,
we show the energy of accelerated particles for a pulsar with
P=33ms. The contours of constant a,accc deviate only

slightly from straight lines corresponding to Bc
4 7 1 7rµ - for

higher values of B. This deviation is due to the variation of

a,accc near the pair formation threshold, and so expression(19)
can be safely used in many cases with a constant value of

a,accc . a,accc itself varies slowly with gap parameters. In
Figure 8, we show 1 a,accc for a pulsar with P=33ms; it was
obtained together with values from Equation (22). It is evident
that the value of 1 5.5a,accc = can be used in Equation (19)
for pulsars with P=33ms. The dependence of a,accc on
the pulsar period P and parameter jx is also quite weak; see

Table 1 where we show the variation of a,accc for B 1012= G,

10c
7r = cm with P, and jx . For estimates of the primary

particle energies, one can use 1 7a,accc = . The dependence of
the particle energy is weak, and along most of the magnetic
field lines in the PC, jx is no more than ∼an order of magnitude
lower than 2. Assuming 1 7a,accc = and 2jx = , Equation(19)
can be written as

P B3.2 10 . 23,acc
7 1 7

12
1 7

c,7
4 7 r´

- - ( )

This estimate for the primary particle energy can be used for
a wide range of parameters of young energetic pulsars. It is
;4 times higher than that given by Equation (23) in Ruderman
& Sutherland (1975).

Figure 7. Primary particle energy: contours of log ,acc as a function of the
logarithms of the radius of curvature of magnetic field lines cr in centimeters
and the magnetic field strength B in Gauss. We used the following values for
gap parameters: P=33ms and 2jx = .

Figure 8. Contour plot of 1 a,accc as a function of the logarithms of the radius
of curvature of magnetic field lines cr in centimeters and the magnetic field
strength B in Gauss. We used the following values for the gap parameters,
P=33ms and 2jx = .

Table 1
1 a,accc for B 1012= G, 10c

7r = cm, and Different Values of
P (in sec.) and jx

P 0.25jx = 2jx =

0.033 6.6 5.5
0.33 7.9 6.6
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The primary particle energy has a weak dependence on
pulsar period, inclination angle (via jx ), and magnetic field
strength; its strongest dependence is on the radius of curvature
of magnetic field lines. These trends are consequences of the
fact that the potential drop across the acceleration gap is
regulated by pair formation. The gap terminates when particles
reach energies high enough to emit pair-producing photons. A
gap with a weak accelerating electric field due to, e.g., a weaker
magnetic field and/or longer period and/or smaller current
density jm will have a larger height than a gap with a strong
accelerating field. A larger height of the gap also results in
longer distances traveled by photons; this largely alleviates the
dependence of the energy of the pair-producing photons on the
magnetic field strength, leaving the curvature of the magnetic
field lines as the strongest factor in determining the energy of
primary particles.

5. The Maximum Pair Multiplicity: Simple Estimate

Now we can make a simple estimate of the maximum
cascade multiplicity during a burst of pair creation. As
discussed in Section 2, in a hypothetical ideal cascade, all of
the kinetic energy of the primary particle is divided into the
energies of the pairs produced by the photons with energies just
above the escape energy; in such a cascade, the multiplicity is
given by Equation (1)—twice the energy of the primary particle
divided by the energy of the escaping photons. In Figure 9,
we show the estimates for the multiplicity of an ideal cascade
log maxk as a function of the magnetic field strength and
the radius of curvature of the magnetic field lines for three
sets of gap parameters P s , jx( [ ] ): (0.033, 2), (0.033, 0.25), and
(0.33, 2). The energies of the primary particles and escaping
photons are calculated according to Sections 3.3 and 4. The
maximum cascade multiplicity is not very sensitive to pulsar
period and inclination angle (via jx ); the strongest dependence
is on the magnetic field strength. The maximum value of maxk
is about 3 106´ , which is the absolute upper limit on the PC
cascade multiplicity.

The analytical expression for the maximum cascade multi-
plicity can be obtained using expressions for ,acc and ,escg
from Sections 4 and 3.3. Substituting Equations (19) and (17)
into Equation (1), we get an estimate of the upper limit of the
cascade multiplicity,

P B

s

5.7 10

0.5
. 24a j a

max
4 1 7

c,7
3 7

12
6 7

,acc
2 7 1 7

,esc
1 esc

k r

c x c

= ´

´

- -
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⎝

⎞
⎠ ( )

The weak dependence of maxk on the pulsar period and
inclination angle (via jx ) is evident from this formula; this is a
consequence of the weak dependence of ,acc on these
parameters. The strong dependence of maxk on the magnetic
field strength is due to the strong dependence of ,escg on B.
Using values for a,accc , jx assumed in Section 4, and the
approximation for a,escc given by Equation (16), we get two

final expressions for maxk , valid for B 3 1012 ´ G,

P B5.4 10 25max
5

c,7
3 7 1 7

12
6 7k r= ´ - - ( )

and for B 3 1012 ´ G,

P B1.6 10 . 26max
6

c,7
3 7 1 7

12
1 7k r= ´ - - - ( )

For higher magnetic field strengths and smaller radii of
curvature of magnetic field lines, the energy of the primary
particles is larger and the energy of escaping photons smaller.
The energy available for the cascade, and hence, the maximum
cascade multiplicity, increases toward higher B and lower cr
values. This dependence on B saturates at B 3 10 G12~ ´
because photon absorption at higher field strengths will happen
near the pair formation threshold, limiting the decrease of the
escaping photons’ energy.
In real pulsar cascades, the multiplicity will be (substan-

tially) smaller than maxk mainly because (i) not all of the kinetic
energy of primary and secondary particles is transferred to pair-
producing photons, (ii) the last-generation photons have
energies above the pair formation threshold, and (iii) pair

Figure 9. Simple estimate for the maximum multiplicity of PC cascades: contours of log maxk as a function of the logarithms of the curvature of magnetic field lines cr
in centimeters and the magnetic field strength B in Gauss for three sets of the gap parameters P s , jx( [ ] ): 0.033, 2( ), 0.033, 0.25( ), and 0.33, 2( ). The critical magnetic
field Bg gg above which photon splitting starts affecting cascade multiplicity is shown by the dashed line.
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production is intermittent; no pairs are produced during the
quiet cascade phase. The first two issues are related to the
physics of the cascade, and we will address them in the next
section. The last issue is directly related to the physics of the
screening of the electric field and plasma physics in the blob of
freshly formed pair plasma; it can be addressed only by means
of self-consistent high-resolution simulations such as those in
Timokhin (2010) and Timokhin & Arons (2013) and will be
the subject of future research. We can provide only very rough
estimates on the effect of pair formation intermittency on the
effective PC cascade multiplicity.

We can see from the results of this section that the absolute
upper limit on the cascade multiplicity in a single burst of pair
formation is 3 10max

6k ´ , with the real effective multi-
plicity being significantly smaller. This already excludes the
possibility of extremely high cascade multiplicities 10 106 7~ –
assumed in some theories of PWNe and pulsar high-energy
emission (e.g., Bucciantini et al. 2011; Lyutikov 2013).

6. Semianalytical Cascade Model

In PaperI, we developed a simple semianalytical cascade
model that allowed us to simulate non-branching cascades—
when only a single emission process is involved—and used it
to explore CR–synchrotron cascades. As we argued in PaperI,
such cascades develop in PCs of moderately magnetized
pulsars (B1012 G) where SR of secondary particles is the
only source of photons creating pairs in the next cascade
generation. In this paper, we are interested in extending the
range of applicability of our model for higher field pulsars as
well as improving its accuracy. Our new model differs from the
one in PaperI in two aspects: (i) it applies to cascades with
arbitrary emission/absorption processes—cascade branches
can be arbitrarily complex—and (ii) it can account for the fact
that emission mechanisms can be broadband, and not all
emitted photons are able to create pairs.

6.1. General Algorithm

The spectral energy distribution of synchrotron and curva-
ture radiation is broadband, with a significant amount of energy
emitted well below the peak energy peak ,

F K d , 27
peak 0

5 3
peak

 


 

ò z zµ( ) ( ) ( )

where K is the modified Bessel function of the order 5/3. In
PaperI, we used a monoenergetic approximation for these
processes—all of the energy is emitted as photons with
energies peak . In our current model, we divide the spectrum
into three spectral bins, 0, 0.3 , 0.3 , 1.5 ,peak peak peak  {[ ] [ ]
1.5 ,peak ¥[ ]}.11 CR and synchrotron emission of particles
are modeled as emission of photons in each of the three
spectral bins j 1, 2, 3= with energies

f , 28j j
peak º ( )

where the number of photons emitted in each spectral bin is
equal to the energy emitted by the particle in that bin,
W f Wi

w
i= (W is the total emission rate), divided by the

characteristic energy of the photons,

n
W f

f

W
. 29j

j

j
w
j

j
peak 

= = ( )

The coefficients f f,j
w
j

( ) for the energy bins we used are
0.3, 0.152{( ), 1, 0.518( ), and 1.5, 0.33 ;( )} they are calculated

by integrating the spectral energy distribution F ( ),
Equation (27), over the spectral bins.
In our algorithm, both leptons and photons are macro-

particles; the statistical weight of each particle is the number of
real particles it represents. We start by calculating the energy of
the primary particle accelerated in the gap according to
Section 4 and follow this particle as it moves along magnetic
field lines, losing energy-emitting CR photons. Each CR
photon initiates an electron–positron cascade with secondary
particles emitting the next generation of pair-producing
photons via SR and RICS of soft X-ray photons from the NS
surface. We follow every generation of photons until their
energy falls below the escaping energy according to Section 3.3
and compute the number of pairs created by each cascade
generation. The diagram in Figure 10 shows the chain of
physical processes initiated by a single CR photon. In
Figure 10, “rows” represent different cascade generations
(particles with the same number of iterations of particles/
photons before their creation, starting with primary particles),
while “columns” correspond to branches (particles of the same
generations produced by different emission processes). In each
generation of the cascade, pairs e produce photons which are
then turned into pairs of the next generation: CRg via CR

Figure 10. Diagram showing the general chain of physical processes in a
strong polar cap cascade. Cascade generations are shown on the left—numbers
connected by double arrows. Electrons and positrons e produce photons
which are turned into pairs of the next cascade generation: CRg via curvature
radiation (solid line with a double arrowhead, labeled “1”), syng via synchrotron
radiation (solid lines with a single arrowhead, labeled “2”), and RICSg via
resonant inverse Compton scattering (dashed lines with a single arrowhead,
labeled “3”). Numbers in parentheses show the origin of each particle.

11 We experimented with a larger number of spectral bins, which led only to a
very moderate improvement in the accuracy of the results and did not justify
the increase of computational time.
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(shown by solid lines with a double arrowhead, labeled “1”),
syng via SR (shown by solid lines with a single arrowhead,
labeled “2”), and RICSg via RICS (shown by dashed lines with
an arrowhead, labeled “3”). Numbers in parentheses show the
origin of each particle; for example, (1, 3, 2) means that this
pair was produced by a synchrotron photon (second generation)
emitted by a pair produced by an RICS photon (first
generation) created by a CR photon (zeroth generation).

Our algorithm is described in detail in Appendix C; here we
give a brief overview. The central part of our algorithm is the
recursive function PairCreation(), Algorithm 2 (Figure 26).
For each photon, PairCreation() calculates whether and
where it will be absorbed to create a pair. The photon is counted
as absorbed if its mfp is less than the escaping distance,

s Resc NSlg , and its absorption point x is still inside the
cascade zone, x s Rcascade NS . Then, for each emission process,
it calculates the energy of the next-generation photons emitted
by the pair by calling function emissionFun() for each
emission process. Finally, it recursively calls itself for each of
the next-generation photons. We follow the primary particle as it
moves along magnetic field lines, losing energy and emitting
photons via CR—Algorithm 1 in Appendix C (Figure 25). For
each CR photon, PairCreation() is called and through its
successive recursive calls, the algorithm follows every branch of
the cascade.12 The total cascade multiplicity is calculated by
integrating the number of particles produced in cascades
generated by each CR photon (computed by recursive calls of
PairCreation()) over the distance within the cascade
zone. We assume that the size of the cascade zone is equal to
the NS radius RNS, so s 1cascade = .

6.2. Microscopic Processes

We analyzed the microphysics of PC cascades of young
energetic pulsars in PaperI in great detail. Here we give a brief
overview of how we treat the cascade microphysics.

At the distance s after exiting the acceleration zone (hereafter
all distances are normalized to RNS), the energy of the primary
particle is (Equation (19) in PaperI)
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where 0 is the initial particle energy, H R r2 3 eNS= »( )
1.88 10 cm7 2´ - , and r e m ce e

2 2= is the classical electron
radius. While traveling along a segment of the length ds, the
energy emitted by the primary particle via CR (all energy
quantities are normalized to mec

2) is
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The peak energy of CR radiation photons is
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The energies and statistical weights of macroparticles repre-
senting CR photons are calculated from Equations (28)
and(29) using Equations (31) and(32).
We follow the evolution of cascades initiated by CR photons

by tracing the pair-producing photons as their energy degrades
with each successive cascade generation. The energy of each
pair-creating photon g is transferred to an electron–positron
pair, which is always created with a non-zero momentum
perpendicular to the magnetic field. The perpendicular energy
is emitted by the pair via SR shortly after pair creation. The
energy emitted as synchrotron photons is (see Equation (13) in
PaperI)
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and the peak energy of the synchrotron radiation is

3

4
, 34asyn,peak c= g ( )

where ac and b are the values of the parameter ac and the
normalized magnetic field strength at the absorption point of
the parent photon, respectively. As for CR, photon energies and
statistical weights of macroparticles representing synchrotron
photons are calculated from Equations (28) and(29) using
Equations (33) and(34).
Pair particles can also scatter thermal photons from the NS

surface. If it happens in the cascade zone, the kinetic energy
associated with the motion of the particle parallel to the
magnetic field is transferred to the next generation of pair-
producing photons. The maximum energy that can be emitted
as RICS photons is the pairʼs kinetic energy left after the
emission of synchrotron photons,
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The mfp for RICS is given by (Dermer 1990; Sturner 1995;
Zhang & Harding 2000)
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where T6 is the temperature of the NS surface in units of 106K,
B12 is the magnetic field strength in units of 1012G, and

coss sm q= , where sq is the angle between the momenta of
the scattering photon and particle in the laboratory frame.
Equation (36) implicitly takes into account the condition that
soft photons must be in cyclotron resonance to be scattered; it
is obtained by integrating the resonant cross-section with a
blackbody spectrum of target photons (Dermer 1990). If the
mfp for RICS is larger than the size of the cascade zone,

RRICS NSl > , we assume that no RICS pair-producing photons
are emitted. As particles move away from the NS, the
probability of RICS decreases relative to that at the injection
point due to the decrease in the magnetic field strength and the
number density of soft photons. To account for this effect, we
assume that if R0.1RICS NSl < , all of the pairʼs kinetic energy
left after the emission of synchrotron photons is transferred to

12 In PaperI, we considered only the CR–synchrotron cascade, i.e., we
followed only the branch of the cascade represented by the first column in
Figure 10, particles with origins 1 , 1, 2 , 1, 2, 2 , ...{( ) ( ) ( ) }; see Figure 18 in
PaperI. Our algorithm then was simpler.
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RICS photons; this fraction linearly decreases as RICSl is
getting bigger R0.1 NS RICSlµ , so that the energy emitted as
RICS photons is
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The spectrum of RICS radiation is narrowband, and we
approximate this process as emission of monochromatic
photons with the energy (see Equation (49) in PaperI)
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This number of RICS photons emitted by each pair is
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6.3. Model Applicability

The limitations of our model come from the assumptions
used in the derivation of the energy of primary particles and the
magnetic field strengths at which physical processes different
from the ones we consider here become important.
Equation (19) for the energy of primary particles ,acc was
derived under the assumptions that (i) particles are accelerated
freely, i.e., radiation reaction can be ignored, and (ii) the length
of the gap is much smaller than the PC radius, so that a one-
dimensional approximation can be used. We also do not model
cascades for which photon splitting is important, so our model
is applicable (iii) for magnetic field strengths below Bg gg ,
calculated according to Equation (14). Constraints (i), (ii), and
(iii) together define the range of pulsar parameters where our
cascade model is applicable. Constraints (i) and (ii) remain the
same as in PaperI; they are derived in AppendicesB and C of
PaperI correspondingly. Constraint (iii)—the magnetic field
strength above which photon splitting becomes important for
photons near the threshold of pair formation—depends on the
radius of curvature of magnetic field lines cr . In Figure 11, we
show the range of pulsar parameters for which our model is
applicable superimposed on the PṖ diagram. The one-
dimensional approximation (ii) is valid to the left of the solid
line, the approximation (i) of free acceleration above the
dotted–dashed line (given by Equation (54) in PaperI). Pulsars
with B B< g gg are below the dashed lines. The line with
short dashes corresponds to 10c

6r = cm and B 4.4= ´g gg

1012 G, the line with medium dashes to 10c
7r = cm and

B 7.7 1012= ´g gg G, and the line with long dashes to
10c

8r = cm and B 1.3 1013= ´g gg G. The yellow region
shows the range of pulsar periods and period derivatives where
these three assumptions are valid. We see that most young
normal pulsars, including gamma-ray pulsars from the Fermi
second pulsar catalog, fall in this range. Technically, the range
of pulsar parameters for which our current model is applicable
is only slightly different from that of PaperI (the limits on B
are less restrictive now; see Figure 13 in PaperI), but our
current model offers a considerably better treatment of cascades
for B1012 G.

7. Multiplicity of the Full Cascade

For a wide range of pulsar parameters, we computed
maximum multiplicities of PC cascades with Bg as the pair-
creation mechanism, and the CR, SR, and RICS of soft thermal
photons from the NS surface as emission mechanisms
according to the algorithm described in previous sections.
In Figure 12, we show contours of the cascade multiplicity

log k( ) as a function of the magnetic field strength Blog( ) in
Gauss and the radius of curvature of magnetic field lines log cr( )
in centimeters for an NS with a uniform surface temperature of
T 106= K. The dashed line indicates the parameter space
above which photon splitting starts (negatively) to affect the
cascade multiplicity. The three plots in Figure 12 are for
different pulsar periods P 33, 330= ms and two different
filling factors 2, 0.25x = . The electric field in the gap for the
case (P= 33 ms, ξ=2) is an order of magnitude larger than in
the other two cases, but the cascade multiplicity is only
moderately higher—it is greater by less than ∼2 times.
Compared to the simple estimates from Section 5, the total
multiplicity for the same pulsar parameters is smaller by the
factor of ∼4–5; compare Figure 12 with Figure 9, where maxk is
plotted for the same combination of parameters. The maximum
value for the multiplicity reaches 6 105´ for smaller radii of
curvature of magnetic field lines 10c

6r ~ cm.
In the case of a pure CR–synchrotron cascade discussed in

PaperI (when the contribution of RICS is ignored), the cascade
multiplicity is the highest for magnetic fields around B1012 G
and drops for both higher and lower magnetic field strengths
(Figure 14 of PaperI). For cascades with RICS, considered in this
paper, the multiplicity decrease for higher magnetic fields,
B1012 G, is much smaller, because the energy of pair parallel
motion is returned back to the cascade by RICS. For lower
magnetic fields B 1012< G, the differences in multiplicities

Figure 11. PṖ diagram, with the yellow area showing the range of parameters
where the approximation for particle acceleration used in this paper is
applicable; see the text for a description. Pulsars from the ATNF catalog
(Manchester et al. 2005, http://www.atnf.csiro.au/research/pulsar/psrcat) are
shown by black dots, γ-ray pulsars from the second Fermi catalog (Abdo et al.
2013) by red dots.
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between the Figure 12 here and Figure 14 of PaperI vary from a
few percent for the case (P= 33ms, ξ=2) to ∼70% for the case
(P= 330ms, ξ=2). These differences are because of the more
accurate treatment of emission processes in this paper compared to
PaperI.

In Figure 13, we show plots illustrating the dependence of
the cascade multiplicity on the NS surface temperature.
Contours of log k( ) are plotted for three different temperatures
of the NS surface T 5 10 , 10 , and 3 105 6 6= ´ ´ K. The
number of soft X-ray photons available for RICS changes
dramatically with the temperature and so does the contribution
of RICS to cascade multiplicity. For T 5 105= ´ K, the
multiplicity profiles are very similar to those of CR–
synchrotron cascades. For magnetic fields B 3 1012 ´ G,
photons are absorbed after propagating a short distance, and
pairs are created with small momenta perpendicular to B, which
leaves a large fraction of the parent photonʼs energy in the
pairs’ parallel motion (this was discussed in detail in PaperI).
If there are not enough soft X-ray photons to be upscattered via
RICS, this kinetic energy is lost from the cascade, and the total
multiplicity diminishes. For higher surface temperatures, the
increasing number of soft photons makes RICS increasingly
efficient, which leads to the decrease of energy “leaks” from the
cascade, and the multiplicity κ becomes similar to the
maximum multiplicity maxk . Indeed, for low temperature
T 5 10 K5= ´ (left panel of Figure 13), the plot for κ is
similar to that of the κ of the CR–synchrotron cascade, and for
high temperature T 3 10 K6= ´ (left panel of Figure 13), the
shape of the κ contours are similar to the ones of maxk shown
on Figure 9 (left panel).

The cascade efficiency maxk k , which characterizes how the
energy available to the cascade is converted into pairs, is shown
in Figure 14, for the same parameters as the κ in Figure 13. For
magnetic fields below ∼1012 G, the efficiency for all three
surface temperatures is similar and 20%; for these magnetic
fields, the RICS contribution is negligible and so the cascade
behavior does not depend on the temperature. For stronger
magnetic fields, the efficiency increases with the temperature.

For high NS temperatures, the cascade efficiency can be as
large as 30%. We should note that because of photon splitting
(which mostly affects RICS photons), the real cascade
efficiency above the dashed lines is smaller than the values
shown in Figure 14.
To get a better understanding of PC cascades near their peak

multiplicities, we consider here several particular cascades and
analyze their properties in detail. We consider cascades in PCs
of pulsar with P=33 ms, assume ξ=2, and use two values of
the radius of curvature of magnetic field lines, 10 cmc

7r = and
10 7.94 10c

7.9 7r = » ´ cm. For each value of cr , we analyze
cascade properties for three values of the magnetic field
strength to illustrate how the RICS contribution changes with
B. These examples represent cascades near their highest
multiplicities in PCs of pulsars when (i) there is a significant
non-dipolar component of the magnetic field ( 10c

7r = cm) as
well as (ii) pulsars with a nearly unadulterated dipolar field
( 10c

7.9r = cm). As we discussed earlier, the dependence of the
cascade multiplicity on pulsar parameters is weak, so these
examples should be representative for cascades in pulsars with
a broad range of periods and filling factors ξ.
We visualize cascade development with three types of plots:

(i) the cascade graphs (Figures 15 and 18), the cumulative pair
injection rates decomposed according to (ii) emission mechan-
isms (Figures 16 and 19) and (iii) cascade generations
(Figures 17 and 20). These plots show properties of the entire
cascade, i.e., all pairs created by a single primary particle as it
moves along magnetic field lines and emits CR photons, which
initiate multiple individual cascades. The cascade graphs in
Figures 15 and 18 are the quantitative representations of the
cascade diagram shown in Figure 10. In these graphs, the
vertices represent pairs with the same origin—the chain of
emission processes which led to the emission of these pairs’
parent photons is the same. The area of the circles at the
graphs’ vertices is proportional to the number of pairs;
however, their sizes are consistent only within the same graph,
and the sizes of the vertices of different graphs are not related.
The cumulative pair injection rates N x<( ) for a given distance

Figure 12. Multiplicity of polar cap cascades for different pulsar parameters, P and ξ. Contours of logk as functions of the logarithms of the curvature of magnetic
field lines cr in centimeters and the magnetic field strength B in Gauss for three sets of the gap parameters P ms , jx( [ ] ): (33, 2), (330, 0.25), and (33, 2). The
temperature of the NS surface was assumed to be T 106= K. The critical magnetic field Bg gg above which photon splitting starts affecting cascade multiplicity is
shown by the dashed line.

14

The Astrophysical Journal, 871:12 (25pp), 2019 January 20 Timokhin & Harding



x, shown in Figures 16, 17, 19 and 20, are the total number of
pairs created at distances less than x.

PC cascades have five to eight generations at most. At each
cascade generation, pairs emit several photons which split the
energy of the particle. This leads to rapid energy degradation
through cascade generations, and the cascade dies after several
generations. On average, the most contribution comes from
generation 4 (see Figures 17, 20).13 The total multiplicity does
not necessarily increase with the number of cascade branches—
despite there being more branches and generations in case (d),
the total multiplicity of these cascades is ∼2.5 times lower than
that of cascades for case (a).

Cases (a)–(c) and (e)–(f) represent cascades with the same
values of cr (107 cm and 107.9 cm, respectively) and decreasing
magnetic field strengths. The role of RICS in cascades
decreases with decreasing B. For case (a), RICS is responsible
for a comparable, and for case (d), an even slightly larger,
number of pairs than SR; see Figures 16(a) and (d). As a result,
cascades (a) and (d) have more branches than their counterparts
with lower magnetic fields ((b), (c) and (e), (f), respectively);
see Figures 15 and 18. RICS never becomes a dominating
process, but it can contribute an amount of pairs to the cascade
comparable to synchrotron radiation for high magnetic fields.

Another illustration of the fact that the number of cascade
branches is not directly related to the total multiplicity is
provided by the comparison of cascades (d)–(f). The complex-
ity of the cascades changes significantly (due to the diminish-
ing role of RICS), but the total multiplicities of cascades (e)
and (f) are only ∼30% and 55% smaller than that of cascade

(d). What matters most is the amount of energy available for
the cascade, i.e., the relation of ,acc and ,escg ; see Figure 9.
We used different values for the photon escape distance

s 0.5esc = and the size of the cascade zone s 1cascade = . The
value of sesc has a direct impact on the energy of escaping
photons according to Equation (15), and the multiplicity
dependence is close to s1 escµ . On the other hand, the exact
value of scascade, which limits the range where photons can be
emitted and absorbed, has little impact on the total multiplicity
as long as s scascade esc . As is evident from Figures 17 and 20,
most pairs are produced at distances sesc< from the NS which
implies that their parent photons are emitted at distances a few
time smaller than scascade. The contribution from photons
emitted at distances approaching scascade is rather small—
primary particles have lost a large fraction of their energy, and
resulting cascades have only one to two generations.
Synchrotron photons have mostly ⊥ polarization and RICS P

one. The photons susceptible to splitting are the ones with ⊥
polarization. At the field strength where photon splitting
becomes important, RICS photons provide a comparable or
slightly larger number of pairs than SR photons, hence the
splitting should significantly affect cascade multiplicity. The
highest cascade multiplicity is reached for B and cr values near
the dashed lines in Figures 12 and 13. So, the pulsars with the
highest multiplicities should have B 4.4 10 1.412~ ´ - ´
1013 G, depending on cr , and surface temperature T106 K.
On the PṖ diagram, Figure 11, the pulsars with the highest
maximum multiplicity are those near the dashed lines.
The spatial distribution of the pair injection rate shows that

most of the pairs produced by RICS photons are created at
distances comparable to RNS, which are much larger than the
PC size r P1.45 10pc

4 1 2» ´ - cm. If soft X-ray photons are
emitted from the entire surface of the NS, as assumed in our
model, their number density does not decrease dramatically
throughout the cascade zone. However, if soft photons are
emitted from a hot PC, and the rest of the NS surface is cold,
T 106< K, the number density of soft photons at distances

rpc will be much smaller than assumed here. In that case, the

Figure 13. Multiplicity of polar cap cascades for different temperatures of the NS surface. Contours of logk as functions of the logarithms of the curvature of
magnetic field lines cr in centimeters and the magnetic field strength B in Gauss for three temperatures of the NS surface, T 5 10 , 10 , and 3 105 6 6= ´ ´ K. The
pulsar parameters P and ξ are assumed to be P=33 ms and ξ=2. The critical magnetic field Bg gg above which photon splitting starts affecting cascade multiplicity
is shown by the dashed line. Note that the middle panel is the same as the left panel on Figure 12.

13 There is no contradiction to the statement we made in Section 2 that most
pairs are produced at the last or penultimate cascade generations. Here we
consider cumulative properties of all cascades generated by CR photons
emitted by a primary particle when it moves through the cascade zone.
Cascades initiated by individual CR photons still produce most of the pairs at
the last generation, but as the energy of the primary particle decreases,
individual cascades have fewer generations. These less energetic cascades
dominate the total pair output.
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Figure 14. Efficiency of polar cap cascades maxk k for different temperatures of the NS surface. Contours of maxk k as functions of the logarithms of the curvature of
magnetic field lines cr in centimeters and the magnetic field strength B in Gauss for the cascade shown in Figure 13.

Figure 15. Cascade graphs for cascades in pulsars with P=33 ms, ξ=2, 10c
7r = cm, and T 106= K, and the following magnetic field strengths: (a) B 1012.5= G,

(b) B 1012= G, and (c) B 1011.5= G. Each graphʼs vertex represents pairs of the same origin—pairs produced in a certain cascade generation by photons emitted by
pairs of the previous generation by the same emission mechanism. Lines connect vertices representing parent particles to the vertices representing child pairs with
arrows directed toward the child pairs. Blue vertices and lines correspond to pairs created by synchrotron photons, orange vertices and dashed lines to pairs created by
RICS photons, and magenta vertices to pairs created by CR photons. The size of each vertex (its area) is proportional to the total number of pairs; the numbers show
the number of pairs represented by the vertices. The relative sizes of the vertices are consistent only within the same graph; the sizes of vertices in different graphs are
not related.

Figure 16. Cumulative pair injection rates N x<( ) for different emission mechanisms for cascades in pulsars with the same parameters as in Figure 15. N x<( ) is the
total number of pairs created at distances less than the distance x. The total pair injection rate is shown by the black solid line. The dotted magenta line is the number of
pairs created by CR photons, the blue solid line by synchrotron photons, and the dashed orange line by RICS photons. The total cascade multiplicity is shown in the
upper left corner of each plot.
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Figure 17. Cumulative pair injection rates N x<( ) for different cascade generations for cascades in pulsars with the same parameters as in Figure 15. The total pair
injection rate is shown by the black solid line. Pair injection rates for different cascade generations are shown by lines colored according to the legend to the right of
panel (c).

Figure 18. Cascade graphs for cascades in pulsars with P=33 ms, ξ=2, and 10 7.94 10c
7.9 7r = » ´ cm and the following magnetic field strengths: (d) B 1012.9= G,

(e) B 1012.5= G, and (f) B 1012= G. Notations are the same as in Figure 15.

Figure 19. Cumulative pair injection rates N x<( ) for different emission mechanisms for cascades in pulsars with the same parameters as in Figure 18. Notations are
the same as in Figure 16.

Figure 20. Cumulative pair injection rates N x<( ) for different cascade generations for cascades in pulsars with the same parameters as in Figure 15. Notations are the
same as in Figure 17.
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role of RICS is reduced, and the PC cascade will operate in the
CR–synchrotron regime. In the latter case, the multiplicity will
reach its peak at B 10 G12~ (for a detailed analysis of CR–
synchrotron cascades, see PaperI).

8. Discussion

In our previous paper, PaperI, we limited ourselves to CR–
synchrotron cascades, which was an adequate approximation
for most young energetic pulsars. However, right where CR–
synchrotron cascades reach their highest multiplicity, RICS
becomes an important emission mechanism, and in order to get
an accurate limit on the maximum cascade multiplicity, it must
be taken into account. In this study, we included in our model
all three processes leading to the emission of pair-producing
photons in PCs of energetic pulsars—RICS, SR, and CR—and
considered the effect on photon splitting on the cascade
multiplicity. The treatment of the radiation is improved,
dividing the spectrum into three energy bands instead of the
delta-function approximation used in PaperI. We used
a more accurate prescription for the single photon pair
production which takes into account the decrease of the
attenuation coefficient near the pair formation threshold—an
important correction for pair formation in magnetic fields with
B1012 G. We also used a more consistent treatment of the
particle acceleration by finding both the energy and the primary
particles ,acc and parameter a,accc , which regulate pair
injection and termination of the acceleration zone, simulta-
neously. We developed a new semianalytical algorithm, which
can incorporate an arbitrary number of microphysical pro-
cesses, model spatial evolution of cascades and allow fast
exploration of cascade parameter space. The improvements
upon the model presented in PaperI allowed us to conduct a
reasonably accurate study of PC cascades in the regime where
they reach their highest multiplicity. Our current model
includes the most important microphysical processes relevant
for PC cascades in young energetic pulsars with the highest
pair yield.

The goal of our study was to find the upper limit on the
multiplicity of electron–positron cascades in pulsars. We have
performed a systematic study of pair cascades above pulsar PCs
for a variety of input parameters including surface magnetic
field, pulsar rotation period, primary particle energy, magnetic
field radius of curvature, and the temperature of the NS surface.
We used the modern description for particle acceleration
derived from self-consistent models of the PC acceleration
zone, i.e., those that are capable of generating currents
consistent with global models of the pulsar magnetosphere.
In our model, we do not address directly the non-stationary
nature of pulsar cascades. We considered pair cascades
generated by primary particles accelerated at the peak of the
pair formation burst. The intermittency of the pair formation
process reduces the total pair yield, and by studying cascades
generated by the most energetic primary particles, we achieved
our goal of finding the limit on pair cascade multiplicity.

We find that pair multiplicity is maximized for pulsars with
hot T 106 K surfaces. These must be very young pulsars that
have not yet cooled down. For such pulsars, cascade
multiplicity (almost) monotonically grows with increasing
B and decreasing cr until photon splitting becomes more
important than pair production, which happens first in the last
cascade generation. In young hot pulsars, pair cascades reach
their highest multiplicities near magnetic field strengths where

photon splitting becomes more efficient than single photon pair
production for the last-generation pair-producing photons. The
maximum multiplicity is in the range 10 3 106 5k ~ - ´ for
magnetic field strengths B3 10 G 10 G12 13 ´ depend-
ing on the radius of curvature of magnetic field lines—the
lower and upper limits on B are for 106r = cm and 108 cm,
respectively. For older pulsars, whose surfaces have cooled
down below 106 K, the maximum cascade multiplicity is in the
range 5 10 105 5k ~ ´ - , and it is achieved at B 1012~ G.
Even if old pulsars have hot PCs, the density of soft photons at
distances comparable to the NS radius will be too small to
sustain efficient RICS, and so the cascade operates in the CR–
synchrotron regime even for high magnetic field strengths.
Here we ignored geometrical effects caused by the curvature

of magnetic field lines. For the smallest values of cr , the
magnetic field lines at large distances from the NS within the
cascade zone can bend rather significantly. Such bending
causes the displacement of particles in the lateral direction,
which, however, would have a negligible effect on the cascade
multiplicity in pulsars with hot surfaces because it does not
affect CR and SR, and the variation of the incident angle of
incoming thermal photons is washed out by the large solid
angle these photons are coming from. It would only affect the
lateral spreading of the cascade. In long-period pulsars, where
the NS surface is cold and the only source of the soft X-rays is
the hot PC, the effects of field line bending might potentially
increase the multiplicity of the cascade. The pairs’ momenta in
that case would have a larger angle with soft photons that could
increase the cross-section to photon scattering. However, the
efficiency of RICS as an emission process is based in part on
the wide range of angles thermal photons are coming from. Due
to the large range of photon incident angles, pairs within a wide
range of energies can still scatter thermal photons (with a
relatively narrow energy distribution) in the resonant regime—
pairs of different energies scatter photons coming from
different directions (Dermer 1990). In the case of hot PCs,
the range of photon incident angles will be small (e.g.,
compared to the case of the hot NS surface), and the potential
increase of the scattering cross-section could benefit pairs of a
single generation at best, thus making this effect of little
importance.
The multiplicity at the peak of the cascade cycle is not very

sensitive to the pulsar period, magnetic field, and radius of
curvature of the magnetic field lines. The multiplicity varies by
less than ∼an order of magnitude for the range of pulsar
parameters spanning two or more orders of magnitude. The
reason for this is the self-regulation of the accelerator by pair
creation: for pulsar parameters resulting in more efficient pair
production, the size of the acceleration gap is smaller, and the
primary particle energy is lower and vice versa.
Even the most efficient cascades typically have only several

generations. High multiplicity is achieved because particles of
each generations emit multiple pair-producing photons. The
biggest contribution comes from individual cascades with three
to four generations. RICS can play an important role in PC
cascades; it can provide an even larger number of pairs than
SR, although SR never becomes a negligible process. When
RICS is an important process, the cascade can have many
branches, but the multiplicity does not directly depend on
cascade complexity (number of branches and generations). A
more important factor is the energy available for the cascade
process; the exact way of how this energy is distributed among
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the final pair population, i.e., via synchrotron or RICS
branches, plays a secondary role.

The main factor determining the total yield of PC cascades
is, however, the variation of the flux of primary particles due to
the intermittency of the particle acceleration in time-dependent
cascades. Simple estimates for the “duty cycle” of the particle
acceleration, presented in Section 10 of PaperI, predict that the
total pair yield of the PC cascade will be lower than the
multiplicity values of cascades at the peak of the pair formation
burst by a factor ranging from a ∼few for the case of space
charge-limited flow (free particle extraction from the NS) with
the super GJ current density ( j j 1GJ > ) and up to ∼several
hundred for the case of Ruderman–Sutherland gaps (no-particle
extraction from the PC) and space charge-limited flow with
anti-GJ current density ( j j 0GJ < ). The effective pair multi-
plicity then cannot exceed a few 105~ ´ even under the most
favorable conditions: in young hot pulsars with a high magnetic
field B 3 10 G12~ ´ and a significant non-dipolar component
of the magnetic field in PCs so that 10c

7r cm.
An accurate estimate of the duty cycle requires self-

consistent modeling of particle acceleration with a much
higher numerical resolution than was done in Timokhin &
Arons (2013) and Timokhin (2010), which will be a subject of
a future paper. The results of this paper can then be easily
adopted into a consistent model of pair supply in pulsars by
scaling the multiplicity values obtained here by the duty cycle
of particle acceleration. The semianalytical model presented
here can also guide more accurate (and time-consuming)
numerical simulations of cascades.

In terms of the direct astrophysical implication of this work,
our main message is simple—under no circumstances can the
pair yield of pulsars be greater than nseveral 105

GJ~ ´ . This
should be taken into account, for example, in modeling PWNe
and lepton components of cosmic rays.

This work was supported by NSF grant 1616632 as well as
the Chandra and Fermi Guest Investigator programs.

Appendix A
Non-resonant Inverse Compton Scattering in Pulsar Polar

Cap Cascades

Pairs can scatter soft X-ray photons emitted by the NS
surface in the resonant as well as non-resonant regime.
However, as we show below, the non-resonant Inverse
Compton scattering (NRICS) is a very inefficient emission
mechanism and can be ignored in comparison with scattering in
the resonant regime.

An emission process could play a role in PC cascades if the
distance over which a particle loses a substantial part of its
energy to that emission process is less than the size of the
cascade zone, which in this work is assumed to be RNS. In
Figure 21, we plot contours of the mfp NRICSl (in centimeters)
of an electron/positron to NRICS of soft photons emitted by
the NS surface as a function of the particleʼs energy and the
temperature of the NS. The mfp was calculated by integrating
the full ICS cross-section over the non-isotropic distribution
of photons emitted by the NS surface, and photons are coming
in the solid angle that is centered around the particleʼs
momentum and limited by 0 ; 0 2max  q q f p<( ), with
cos 0.5maxq = (in this paper, we use the same solid angle for
modeling RICS). The spectral energy distribution of thermal
photons was modeled as the Rayleigh–Jeans power law with
the high-energy cutoff chosen in such a way that the total

emitted energy is consistent with the Stefan–Boltzmann
law.14 It is easy to see from that plot that the mfp to NRICS
becomes less than the NS radius only for very high
temperatures of the NS surface, T 2 106 ´ K, and even for
T 3 10 K6 ´ the mfp is only R0.2NRICS NSl  . According
to common models of NS cooling, even the youngest pulsars
should have surface temperatures less than 3 10 K6´ (e.g.,
Haensel et al. 2007).15 This implies that it is highly unlikely
that in PCs of pulsars, particles could lose any significant
fraction of their energy to NRICS.
But even if the NS surface is very hot, at the upper limit of

the predicted temperature range, T 3 106´ K, NRICS
would still be of very limited relevance for cascade physics.
The reason is as follows. From Figure 21, it is clear that NRICS
might be relevant for particles with energies 10 103 4  .
Let us compare now the efficiency of resonant and non-
resonant ICS. In Figure 22, we plot contours of the logarithm of
the ratio of the mfp of a particle to non-resonant and resonant
ICS NRICS RICSl l as a function of particle energy and the
strength of the magnetic field for the surface temperature
T 3.5 106= ´ K. In the energy range 10 103 4  , where
a significant part of the particleʼs momentum could be radiated
via NRICS within the cascade zone, NRICSl is less than RICSl
only for magnetic fields B 3 1012 ´ G. For magnetic field
strengths 10 G12 , the fraction of the parent photonʼs energy
going into the parallel momentum of the created pair is smaller

Figure 21. Contour plot of the logarithm of the mean free path of a particle to
non-resonant ICS NRICSl (in centimeters) as a function of the logarithm of the
particle energy  and the temperature of the NS surface T6 (in units of 106K).

14 Our approximation is more accurate than the monochromatic approximation
used by Sturner (1995) to obtain his expression for electron energy losses (14),
which has to be integrated numerically. We were also able to derive an
analytical expression for the electronʼs mfp (A. N. Timokhin 2018, in
preparation).
15 The PCs of some pulsars can be hotter than T 2 10 K6 ´ , but the solid
angle of the PC at distances larger than the PC radius will be small, and so the
efficiency of ICS will be significantly suppressed; also see the next paragraph.
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than 30%~ —most of the energy is emitted as synchrotron
photons; see PaperI, Section4, Figure 5. In the narrow range
of magnetic field strengths B10 G 3 10 G12 12  ´ , NRICS
might become an important process, but only for particles of a
single cascade generation. Indeed, because of a very steep
dependence of NRICS RICSl l on particle energy for a given
value of B, even if pairs of some generation with energy in the
range10 103 4  do create photons more efficiently in the
non-resonant regime, the next generation of pairs will scatter
photons more efficiently in the resonant regime.

Appendix B
Optical Depths for Single Photon Pair Creation in

Ultrastrong Magnetic Field

In PaperI, we adopted the widely used Erber (1966) formula
for the opacity for single photon pair production in a strong
magnetic field,

b, 0.23 sin exp
4

3
, 40

f

C
a y

a
y

c
= -g g 

⎛
⎝⎜

⎞
⎠⎟( ) ( )

where b B Bqº is the local magnetic field strength B normalized

to the critical quantum magnetic field B eq f C
2a= =

4.41 1013´ G, ψ is the angle between the photon momentum
and the local magnetic field, e c 1 137f

2 a = » is the fine
structure constant, and mc 3.86 10C

11= = ´ - cm is the
reduced Compton wavelength. The parameter χ is defined as

b
1

2
sin , 41c yº g ( )

where g is the photon energy in units of mec
2. Expression(40)

has been obtained in the asymptotic limit of 1c  and b 1 .

While 1c  is a good approximation for gamma-rays
absorbed in PCs in all pulsars (see Section 3.1), the
approximation b 1 can become too restrictive for pulsars
with higher magnetic fields. For pairs created near the
kinematic threshold,

sin 2. 42 y =g ( )

Equation (40) can overestimate the opacity by a factor of a
few for pulsars with magnetic fields 3 10 G12 ´ (Daugherty
& Harding 1983). The discrepancy becomes larger for
stronger fields. An accurate treatment of the pair-creation
cross-section for non-small b and/or near-threshold pair
creation requires summation over a finite number of cyclotron
energy levels of created pairs, which results in unwieldy
expressions (like Equation (6) in Daugherty & Harding 1983).
For our semianalytical model, such treatment would be an
overkill, resulting in unnecessary complication of the model.
Instead we use the numerical fit to the exact expression for
the opacity suggested by Daugherty & Harding (1983; their
Equation (24)),
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The second term in fα is significant only for pair creation close
to the threshold (42). The non-zero part of expression(43) for
ag can be written as

b
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i.e., it differs from the usual Erberʼs formula(40) by the
exponential term

f b
b

, exp 0.56 . 46,1

2.6962

3.7
c

c
º -a

⎛
⎝⎜

⎞
⎠⎟( ) ( )

This term significantly differs from 1 when pair formation
occurs close to the threshold.
The optical depths for pair creation by a photon in a strong

magnetic field after propagating a distance l is

l x dx, , , 47
l

0
 òt a y=g g g( ) ( ( )) ( )

where integration is along the photonʼs trajectory. For photons
emitted tangent to the magnetic field line, dx dcr y= , where cr
is the radius of curvature of magnetic field lines; the angle ψ is

Figure 22. Contour plot of the logarithm of the ratio of mean free paths of a
particle to non-resonant and resonant ICS NRICS RICSl l as a function of the
logarithm of the particle energy  and the logarithms of the magnetic field
strength B in Gauss.
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always small so the approximation siny y» is very accurate.
In our approximation of constant magnetic field, both b and cr
are constants. From Equation (41), we have b2 y c= g , and
substituting it into Equation (47) we can express the optical
depth τ to pair production as an integral over χ,

l A
b

f b d, exp
4

3
, ,

48
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where A 0.92 1.74 10 cmf C
8 1aº » ´t

- . If we expand the
term f ,1a in a Taylor series, the integral in Equation (48) can be

represented as a sum of integrals x x dxexp ;ò -x ( ) each of those
integrals can be integrated analytically.

We expand f ,1a in a Taylor series as e x1x » - +-

x 2 ...2 - and keep up to the fifth term
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Only odd-order term expansions are monotonic, and we find
that a third-order series is not a good-enough approximation
near the threshold. Equation (49) provides a good fit with the
minimum number of terms—see Figure 23.

Substituting expansion(49) into Equation (48), we get an
analytical expression for the optical depth as a series of special

functions:
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The special function a x,G( ) is the so-called upper incomplete

gamma function, defined as a x t t dt, exp
x

a 1òG = -
¥ -( ) ( ) .

There are efficient numerical algorithms for its calculation
implemented in numerical libraries and scientific software
tools; using Equation (50) for the calculation of the optical
depths results in more efficient numerical codes than direct
integration of Equation (48).
For b 1 , when the opacity is given by Erberʼs

formula(40), the optical depths to pair creation is given by
the first term in Equation (50),
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This expression is a more compact from of the expression for
t c( ) from PaperI (Equation (6) in that paper) as
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For 1c  , Equation (51) can be simplified further by
expanding it into a Taylor series around 0c = and retaining
the first term,
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Appendix C
Algorithms for the Semianalytical Calculation of Cascade

Multiplicity

Here we show pseudo-codes of the algorithms used to
compute cascade multiplicity. For the calculation of

B, ,a cc rg( ), we computed and stored a table of 1 ac values
for a uniformly divided grid 77 30 20´ ´ in log  ´g

Blog log cr´ space, and then used cubic piece-polynomial
interpolation to get ac for parameter values required by
expressions used in the algorithms.

Figure 23. Fifth-order Taylor series expansion for f ,1a given by Equation (49)—
dashed lines—compared to the value given by Equation (46)—solid lines—
as a function of χ for five values of the magnetic field b 0.01, 0.11, 0.21,=
0.31, 0.41 (lines from left to right).

21

The Astrophysical Journal, 871:12 (25pp), 2019 January 20 Timokhin & Harding



Our seminumerical algorithm is built around the data
structure we call the “cascade matrix.” The cascade matrix
contains information about the spatial distribution of the pair
injection rate in the cascade ordered by cascade generations and
emission processes which lead to the creation of pairs. The
spatial distribution of pair injection rates is stored as arrays xká ñ
of (fixed) length nx; in our simulations, we usually use
nx=10. We divide our calculation domain s0, esc[ ] into nx

intervals; each value of ik is the number of pairs injected in the
interval s s,i i 1+[ ].
The structure of a cascade matrix for a cascade initiated by CR

when both synchrotron and RICS photons create secondary pairs is
shown on Figure 24. Row igen contains distributions for all pairs
created in cascade branches of generation igen. Column iproc

contains the distributions for pairs created by photons emitted via
the same emission mechanism with id=iproc, i.e., pairs created in

Figure 24. Structure of the cascade matrix. Each row contains information about pairs created in the generation whose number is equal to the row number.
Each column contains information about pairs created by photons emitted by the emission process id equal to the column number; in this case, the IDs of the
emission processes are: 0—CR, 1—synchrotron, 2—RICS. Each matrix element is an associate array with entries : xorgn ká ñ( ) , where the key orgn( ) is the origin
of the pairs—the label of the cascade branch where pairs have been created—and xká ñ is an array of the spatial distribution of pairs created in the cascade
branch orgn( ).

Figure 25. Main function: calculates the multiplicity of the cascade initiated by the CR of a primary particle.

22

The Astrophysical Journal, 871:12 (25pp), 2019 January 20 Timokhin & Harding



cascade branches ending in id=iproc. Element i i,gen proc[ ] of the
cascade matrix is an associative array consisting of entries

: xorgn ká ñ( ) , where the tuple orgn( ) is the pair’s “origin” (the
label of the cascade branch which leads to the injection of the
pairs), and array xká ñ is the spatial distribution of pairs created by a
given cascade branch. Although the tuple orgn( ) is enough to
identify the position of the pair distribution regarding cascade
generation and the emission process—the tuple’s length is the

number of the cascade generation and the last entry is the id of the
process producing the pair-creating photon—keeping entries sorted
according to igen and iproc makes interpretation and visualization of
the simulation results much easier.
Mathematical operations on the cascade matrix16 are defined

as element-wise operations on the pairs spatial distribution

Figure 26. PairCreation function: calculates the multiplicity of a photon-initiated cascade.

16 We would need only addition and multiplication.
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arrays xká ñ with the same orgn( ), e.g., for the addition of two
arrays x

1ká ñ and x
2ká ñ , the resulting array is defined as

i nx: for 1 ... .
54

x x x i i i
res 1 2 res 1 2k k k k k ká ñ = á ñ + á ñ = + =

( )

Neither the position of the element : xorgn ká ñ( ) nor the value
of orgn( ) changes. If an expression involving the cascade
matrix entry i j, orgn[ ][( )] is missing in one of the matrices but
not in the other(s), a zero-filled array of length nx is inserted at
the position i j, iorgn[ ][( )] of the missing element and then the
operation is performed as in Equation (54), e.g., for the
addition of two cascade matrices M1 and M2, each element of
the resulting matrix M res is given by
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Such data structure is relatively straightforward to implement in
modern scripting languages (e.g., as a list of dictionaries in
Python or a list of associations in MATHEMATICA).

The algorithm has two structural parts. The main function
shown in Figure 25 as Algorithm 1 follows a primary particle
as it propagates through the calculation domain and emits CR
photons, integrating contributions of cascades initiated by CR
photons. This function fills an (initially empty) cascade matrix
M with the data from all cascades initiated by CR photons
emitted by the primary particle. The calculation domain is
divided in N logarithmic segments17 and the energy of the
primary particle  is calculated in each segment according to
Equation (30), which takes into account particle energy losses
due to CR. g is used to calculate the spectrum of CR, which
is divided into nCR spectral bins. The recursive function
PairCreation is called for each spectral bin to calculate
cascades initiated by CR photons. Each CR photon belongs to
generation 0 of a new cascade, so PairCreation is called
with generation number i 0gen = , photon’s origin 0orgn = ( ),
and an empty (auxiliary) cascade matrix M_1. Matrix M_1 filled
in recursive call(s) of PairCreation is added to the matrix
M according to the trapezoidal integration rule.

Function PairCreation, shown in Figure 26 as
Algorithm 2, fills a cascade matrix M, which is passed to it as
an argument, with data about a photon-initiated cascade. Among
its arguments, there is a list of functions emissionFun_list;
each function in that list calculates the spectrum of the next-
generation cascade photons for one emission mechanism.
Emission processes relevant for the full cascade are set by the
content of this list. In this paper, the list consists of two
functions, the first one calculates spectrum of SR, and the second
one the spectrum of RICS photons,18 but it can be extended to
include additional processes, such as, e.g., NRICS. Other
arguments given to PairCreation contain information

about photon(s) initiating the next cascade generation (their
energy g, number of such photons nγ, their origin orgn,
number of the current cascade generation igen, coordinate of
photon emission point xe), and parameters of the cascade zone.
PairCreation calculates the coordinate where the

photon will be absorbed. If this point is outside of the
calculation domain, control is returned to the calling program;
all recursive calls of this function are terminated in this way.
If absorption happens inside the domain, a cascade branch is
created—the cascade generation counter igen is increased and a
label for the new branch is created by adding the ID of the
emission process to the tuple orgn received as a parameter.
The position of injected pairs in array xká ñ is computed, and
an array xká ñ is created for this branch of the cascade. This
array is added to the cascade matrix either to an existing array
for the same branch, or, if the branch is not yet present in the
matrix, a new entry is created. Then, the function proceeds to
the next cascade generation. For each emission process, the
spectrum of the next-generation photons is computed by
interaction over the function list emissionFun_list. A
new instance of PairCreation is called for each of the
spectral bins in the spectra of the next-generation photons.
At this place, the algorithm gives control to the next cascade
generation.
The general algorithms can handle a cascade process of any

complexity, which depends on the number of emission
processes given to it in the list emissionFun_list and is
straightforward to parallelize. The resulting cascade matrix is
easy to analyze, i.e., to get the total multiplicity of the
cascade all entries of the matrix should be summed; to plot
the cascade tree as shown in Figures 15 and 18, all arrays xká ñ
are summed and the matrix is traversed row-wise to create
the tree, etc.
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