

PHYSICS OF RADIO PULSARS 101

Andrey Timokhin

NASA Goddard Space Flight Center

"MAGNETO PLASMIC PROCESSES IN RELATIVISTIC ASTROPHYSICS"

September 7-11, 2015

Andrey Timokhin (NASA/GSFC)

Pulsars 1001

Tarussa, Sep 8, 2015 1 / 60

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Pulsars: Observational Facts

2

イロト イヨト イヨト イヨト

Pulsating optical source: "Crab pulsar"

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Sounds of Pulsars

(Credit: Jodrell Bank Centre for Astrophysics)

Crab Pulsar: from Radio to Gamma-rays

э

Pulsar Multiwavelength Spectra

Andrey Timokhin (NASA/GSFC)

Pulsars 1001

Tarussa, Sep 8, 2015 6 / 60

э

Radio telescopes are huge

Arecibo Observatory - the largest radio telescope

Gamma-ray telescopes are small

Fermi Space Observatory - the largest gamma-ray telescope

$P - \dot{P}$ diagram

Hertzsprung-Russell diagram of pulsar science

Pulsars slow down

$$\frac{d E_{rot}}{dt} = \frac{d}{dt} \left(I\Omega^2 \right) = -4\pi^2 I \frac{\dot{P}}{P^3}$$

due to EM energy losses

$$W_{EM} = \frac{2\ddot{\mu}^2}{3c^2} = \frac{32\pi^4 B^2 R_{NS}^6 \sin^2 \alpha}{3c^2} \frac{1}{P^4}$$

Magnetic field: $B = 3.2 \times 10^{19} \sqrt{P\dot{P}}$ G Characteristic age: $\tau = P/(2\dot{P})$

Pulsars: What we see

- Pulse peaks are narrow
- Negligible energy budget

- PWNe feed by dense plasma
- Energy goes there

Pulsars: Empirical Model

2

Popular empical pulsar model

Andrey Timokhin (NASA/GSFC)

Tarussa, Sep 8, 2015 12 / 60

э

イロト イヨト イヨト イヨト

Pulsar: rapidly rotating magnetized neutron star "Electric lighthouse"

A > + = + + =

Pulsar fact sheet

- Population: > 2000
- Energy source: star's rotation stored energy ~ 10⁵¹ ergs
- Emissivity: up to 10^{38} erg/sec $\sim 10^5$ of Sun's emissivity
- Periods: ~ 1 msec -10 sec Linear velocity of rotation at the surface: up to ~ 15%c!
- Extremely stable clocks: stability $\delta P/P$ up to about one part in 10¹⁵!

NSs are the most extreme objects in the Universe

- Mass: $\sim 1.4 \ensuremath{\textit{M}_{Sun}} \simeq 3 \times 10^{33} \ensuremath{\,\text{g}}$
- Radius: 10 km ~ 3r_g only ~ 3 times larger than a black hole!
- Mean Density: ~ 10¹⁵ g/cm³
 Gigantic "atomic nucleus"!
- Magnetic field: ~ 10^{12} G (up to -10^{15} G) "Density" of the magnetic field: ≥ 40 g/cm³! [($B^2/8\pi$)/ c^2]
- Voltage: $\sim 10^{16} V$

Density: Osmium 22.59 g/cm³, Plutonium 19.82 g/cm³, Iron 7.87 g/cm³, Water 1 g/cm³, Air 0.00126 g/cm³

4 3 5 4 3 5 5

Pulsar on a tabletop

2

・ロト ・ 四ト ・ ヨト ・ ヨト

Basic physical pulsar model

Force-free magnetosphere and electromagnetic cascades

FIG. 1.—Schematic diagram showing the corotating magnetosphere and the wind zone. Star is at lower left.

Goldreich-Julian 1969

Fig. 3.—Breakdown of the polar gap. The solid lines are optan field lines of varenge radius of curvature ρ_i for a pure dipole field $\rho \sim (Rc(D)^{1/2} \sim D^{0}P^{1/2} \operatorname{cm})$, but for a realistic pulsar one expects $\rho \sim 10^6 \operatorname{cm}(1)$ many multipoles contribute near the surface. A photon (of energy > 2 m²) produces an the position out of the gap and acceleratis the electron toward the solidan surface. The electron moves along a curved field line and radiusts an energicic photon at 2 which goes on to produce a pair at 3 once it has a sufficient component of its caucade along curved field lines—curvature radiation—pair production results in a "spatt" breakdown of the gap.

Ruderman-Sutherland 1975

Pulsar Magnetosphere: Theorist view

Electrical generator

The magnetosphere is charged characteristic charge density – "Goldrech-Julian" charge density $\eta_{\rm GJ}.$

Pulsar Magnetosphere: Large scale view

"Plasma machine"

э

MHD-like models

2

イロト イヨト イヨト イヨト

Electrodynamics of pulsar magnetosphere

- The system is relativistic: *E* ~ *B*
- The system is not charge-neutral: j ~ ηc (η is the charge density)
- The system can become charge starved: $n \sim \eta/e$

Force-Free Electrodynamics of pulsar magnetosphere

• MagnetoHydroDynamics:

Maxwell Equations + Matter Equations

• Force-Free MHD:

Maxwell Equations + $\eta \cdot \boldsymbol{E} + \frac{1}{c}\boldsymbol{j} \times \boldsymbol{B} = 0$

4 3 5 4 3 5

Stationary Configuration: **E** and **B** through Ψ , **I**, $\Omega_{\rm F}$

In cylindrical coordinates (ϖ, Z, φ)

• Magnetic field:

$$\boldsymbol{B} = \frac{\boldsymbol{\nabla} \boldsymbol{\Psi} \times \boldsymbol{e}_{\boldsymbol{\Phi}}}{\boldsymbol{\varpi}} + \frac{4\pi}{c} \frac{\boldsymbol{I}}{\boldsymbol{\varpi}} \boldsymbol{e}_{\boldsymbol{\Phi}}$$

• Electric field:

$$\boldsymbol{E}\equiv-rac{\Omega_{\mathrm{F}}}{c}\nabla\Psi$$

- magnetic flux trough the sufrace S – Φ_{mag}

$$\Phi_{\rm mag} \equiv \int_{\mathcal{S}} \boldsymbol{B} \, \boldsymbol{d} \boldsymbol{\sigma} = 2\pi \boldsymbol{\Psi}$$

• Outflowing poloidal current – J:

$$J \equiv \int_{\mathcal{S}} \boldsymbol{j} \, \boldsymbol{d\sigma} = 2\pi \boldsymbol{l}$$

4 3 5 4 3 5

Stationary Configuration: Pulsar equation

The force-free equation of motion:

$$\eta \boldsymbol{E} + \frac{1}{c} [\boldsymbol{j} \times \boldsymbol{B}] = 0 \quad \Rightarrow \quad (\nabla \cdot \boldsymbol{E}) \boldsymbol{E} + [[\nabla \times \boldsymbol{B}] \times \boldsymbol{B}] = 0.$$

The poloidal component of it is the pulsar equation

$$\left(1-\frac{\Omega_{\rm F}^2\varpi^2}{c^2}\right)\Delta\Psi-\frac{2}{\varpi}\partial_{\varpi}\Psi+\left(\frac{4\pi}{c}\right)^2I\frac{dI}{d\Psi}-\frac{\varpi^2}{c^2}\Omega_{\rm F}\frac{d\Omega_{\rm F}}{d\Psi}\left(\nabla\Psi\right)^2=0$$

(Grade-Shafranov equation for poloidal magnetic field)

There are two integrals of motion in the Grad-Shafranov equation – I and Ω_F . If they are known one can solve the equation for Ψ .

- A TE N - A TE N

Dimensionless pulsar equation

$$(\beta^{2}x^{2}-1)(\partial_{xx}\psi + \partial_{zz}\psi) + \frac{\beta^{2}x^{2}+1}{x}\partial_{x}\psi - S\frac{dS}{d\psi} + x^{2}\beta\frac{d\beta}{d\psi}(\nabla\psi)^{2} = 0.$$
(1)

At the light cylinder the coefficient by second derivatives goes to zero and the pulsar equation has the form

$$2\beta \,\partial_x \psi = S \frac{dS}{d\psi} - \frac{1}{\beta} \frac{d\beta}{d\psi} \left(\nabla \psi\right)^2 \,. \tag{2}$$

 $\Omega_{\rm F}(x,z) \equiv \beta(x,z) \,\Omega$, distances in Light Cylinder radii

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Calculation domain

Tarussa, Sep 8, 2015 26 / 60

э

・ロト ・ 四ト ・ ヨト ・ ヨト

Pulsar Magnetosphere in 2D

Numerical simulations of Force-Free magnetosphere

(Timokhin 2006)

Andrey Timokhin (NASA/GSFC

э

Pulsar Magnetosphere in 2D

Numerical simulations of Force-Free magnetosphere

(Timokhin 2006)

Andrey Timokhin (NASA/GSFC

э

Pulsar Magnetosphere in 2D: different configurations

Solutions with the different sizes of the corotation zone

(Timokhin 2006)

Surface charge density of the current sheet

 Σ is normalized to $0.5\mu/R_{\rm LC}^2$

∃ ▶ ∢

Force-Free Electrodynamics

$$\begin{aligned} \frac{1}{c} \frac{\partial \mathbf{E}}{\partial t} &= \nabla \times \mathbf{B} - \frac{4\pi}{c} \mathbf{j} \\ \frac{1}{c} \frac{\partial \mathbf{B}}{\partial t} &= -\nabla \times \mathbf{E} \\ \mathbf{j} &= \frac{\mathbf{c}}{4\pi} \nabla \cdot \mathbf{E} \frac{\mathbf{E} \times \mathbf{B}}{B^2} + \frac{\mathbf{c}}{4\pi} \frac{(\mathbf{B} \cdot \nabla \times \mathbf{B} - \mathbf{E} \cdot \nabla \times \mathbf{E})\mathbf{B}}{B^2} \end{aligned}$$

Andrey Timokhin (NASA/GSFC)

Tarussa, Sep 8, 2015 31 / 60

æ

Pulsar Magnetosphere in 3D: Structure of inner parts

Numerical simulations of Force-Free magnetosphere

(Spitkovsky 2006)

Andre	y Timokhin	(NASA/GSFC)
-------	------------	-------------

Pulsars 1001

Tarussa, Sep 8, 2015 32 / 60

∃ ▶ ∢

Pulsar Magnetosphere in 3D: Outer parts - Wind Zone

Numerical simulations of Force-Free magnetosphere

(Kalapotharakos et al. 2012)

∃ ▶ ∢

Plasma Creation

2

イロト イヨト イヨト イヨト

Pulsar: a plasma gun

Emission is a whistle of a locomotive

э

・ロト ・ 四ト ・ ヨト ・ ヨト

Plasma creation in the polar cap

Cascades are electromagnetically driven

Polar Cap Electrodynamics

Rotation of the NS

 $\nabla \cdot \boldsymbol{\textit{E}} = 4\pi(\eta - \eta_{GJ})$

• Twist of magnetic field lines

$$\nabla \times \boldsymbol{B} = \frac{4\pi}{c}j + \frac{1}{c}\frac{\partial \boldsymbol{E}}{\partial t}$$

• *E* = 0 if <u>both</u>

$$\eta = \eta_{GJ}$$

 $j = j_{m} \equiv rac{c \,
abla imes oldsymbol{B}}{4\pi}$

3 → 4 3

Numerical code for cascace modeling PAMINA

PIC And Monte-Carlo code for cascades IN Astrophysics

[AT 2010, AT & Arons 2013]

Modeling from the first principles:

э.

< 日 > < 同 > < 回 > < 回 > < 回 > <

Limit cycle: series of discharges

No particles extraction from the NS

Andrey Timokhin (NASA/GSFC)

Tarussa, Sep 8, 2015 39 / 60

Formation of a low energetic flow for $j/j_{GJ} < 1$

Free particle extraction from the NS

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

SCLF: Discharges in super-GJ flow $j/j_{GJ} > 1$

Discharges in the return current

 $j/j_{GI} < 0$

The same for both RS and SCLF

Free particle extraction from the NS (Timokhin & Arons'13)

Andrey Timokhin (NASA/GSFC)

Pulsars 1001

Tarussa, Sep 8, 2015 43 / 60

No particle extraction from the NS

(Timokhin '10)

Andrey Timokhin (NASA/GSFC)

Pulsars 1001

Tarussa, Sep 8, 2015 44 / 60

Waves during discharge

It did not escape our attention...

Full cascade in young PSRs

Multiplicity of cascade initiated by a single particle

Multiplicity of polar cap cascade initiated by a particle with the energy ε_{0}

Andrey Timokhin (NASA/GSFC)

Tarussa, Sep 8, 2015 47 / 60

Multiplicity of polar cap cascade: $\kappa \sim 10^5$

Multiplicity of polar cap cascade with particle acceleration taken into account

(Timokhin & Harding '15)

Dependence on ρ_c partially cancels out:

- small $ho_c
 ightarrow$ high splitting efficiency, but low primary particle energy
- large $\rho_c \rightarrow$ low splitting efficiency, but high primary particle energy

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Cascade Portrait: pairs

(Timokhin & Harding '15)

Andrey Timokhin (NASA/GSFC)

Pulsars 1001

Tarussa, Sep 8, 2015 49 / 60

2

∃ > < ∃</p>

Cascade Portrait: photons

(Timokhin & Harding '15)

Andrey Timokhin (NASA/GSFC)

Tarussa, Sep 8, 2015 50 / 60

Global Kinetic Models

æ

Magnetosphere Formation

Still an open question

3D Global Kinetic Model of the Magnetosphere

2D Global Kinetic Model of the Magnetosphere

(Chen & Beloborodov '14)

Biggest problems

æ

Pulsar slowdown

Breaking index - never 3!

Breaking index:

$$n_b \equiv \frac{\ddot{\Omega}\Omega}{\dot{\Omega}^2}$$

for magnetodipolar as wells as all force-free models $n_b = 3!$

PSR	Frequency	n	Ref.
	(Hz)		
B1509 - 58	6.633598804	2.839 ± 0.001	[11]
J1119 - 6127	2.4512027814	$2.684 {\pm} 0.002$	[12]
J1846 - 0258	3.062118502	2.65 ± 0.1	[11]
		2.16 ± 0.13	[13]
B0531+21 (Crab)	30.22543701	2.51 ± 0.01	[14]
B0540 - 69	19.8344965	$2.140 {\pm} 0.009$	[11, 15]
J1833 - 1034	16.15935711	$1.8569 {\pm} 0.001$	[16]
B0833-45 (Vela)	11.2	1.4 ± 0.2	[17]
J1734 - 3333	0.855182765	0.9 ± 0.2	[18]

Table 1: Selected pulsars adopted from [19, 18, 6].

never the case!

Andrey Timokhin (NASA/GSFC)

Pulsars 1001

Tarussa, Sep 8, 2015 56 / 60

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Spindown rate variations: PSR B1931+24

Two different states with different slowdown rates

PSR B1931+24 $P = 0.813 \,\mathrm{s}, \, W_{on}/W_{off} = 1.5$ 0.55 on off on Δv (μHz) 5 0.5 0.45 0.4 on off on off Fiming Residual (ms) -2 0 2 4 52800 52850 52900 Modified J ulian Date (day)

(Kramer et al. 2006)

Andrey Timokhin (NASA/GSFC)

Pulsars 1001

э

・ロト ・聞 ト ・ ヨト ・ ヨト

No high energy emission from polar caps

Fermi sees gamma-rays from the outer magnetosphere only

э

A (10) A (10)

PSR J1057-5226: Polar cap emission?

May be γ -ray emission from polar caps is in a lower energey range?

The 14 at 14

Conclusions

- This is a very difficult problem
- We still have no quantitative pulsar model